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Chapter 1

Introduction

The models of control systems encountered in several diverse naval applications are nonlinear; moreover, they
are also time-varying, and have uncertainties affecting them. The underlying controller design problems,
beyond requiring system stability, also typically require the optimization of some performance objectives.
Ideally, the control law should have the properties that: (1) it adapts itself according to the nonlinearities; (2)
it can handle several performance objectives (besides stability) in a uniform manner; and (3) it guarantees
the performance of the closed-loop system in spite of the variations and the uncertainties.

The primary goal of the project was a numerical solution methodology for solving the general nonlin-
ear controller design problem. Our approach is motivated by recent advances in control and optimization
theory as well as the sustained growth in the available computing power over the past few years. The
proposed controller architecture is gain-scheduled (i-e., the controller uses the measured nonlinearities and
time-variations), and optimizes the worst-case performance—over the uncertainties—of the system. The
search for the optimal controller parameters can be reformulated as convex optimization problems involving
linear matrix inequalities (LMIs) in several important cases. The design approach lends itself naturally to
the development of computer-aided design tools, and enjoys the advantages of widespread applicability, ease
of implementation and cost effectiveness. Another goal of this research project was to integrate the advances
in gain-scheduled controller design with the project Intelligent Information and Autonomous Agents
Applied Research on Unmanned Combat Air Vehicles, directed by Dr. Allen Moshfegh.

A third goal of the project was the development of robust estimation techniques. Estimation problems arise
in many naval applications in control, communications and signal processing areas. Traditional estimation
algorithms are usually based on a nominal system model without uncertainty. However, in many cases,
there exist uncertainties in model parameters and even model structures because of modeling errors from
system identifications. These uncertainties may degrade the estimation performance of the algorithm without
robustness.

In this report, we will describe the results from the pursuit of the goals listed above.

1.1 Analysis and gain-scheduled control

The plant model consists of a nominal system, which is affected by unmeasurable uncertainties Aynmeas-
Measurable uncertainties such as parameter variations are accounted for by Ameas. y consists of sensor
signals, u consists of actuator inputs, w consists of exogenous signals (noises, reference inputs etc), and z
contains all the signals of interest. The map from w to z contains all input-output maps of interest. The
objective is to design a control law v = K(y) so that the closed-loop system map from w to z possesses
“desirable” properties.

The controller architecture that we have studied is one where the controller itself is in a feedback con-
figuration with a linear part, with the measured uncertainties Ameas appearing in a feedback loop. The
closed-loop system architecture is shown in Fig. 1.1, with the controller enclosed in dotted lines. Thus,
depending on the nature of Apeas, the controller may be LTI, linear time-varying, or even nonlinear.

We have solved a number of robustness analysis and design problems in this setting.
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Figure 1.1: Closed-loop system. The gain-scheduled controller Kgsis shown enclosed in dashed lines.

List of research results

1. Robust performance analysis using Lyapunov functions.

The first step in realizing the project goals is that of robust performance analysis; the results achieved
with this goal are summarized in Chapter 2.

2. Robustness under bounded uncertainty with phase information.
The special case where the uncertainties, in addition to being bounded, also satisfy constraints on their
phase, is of particular interest. Robustness analysis of such systems is presented in Chapter 3.

3. Efficient computation of a guaranteed lower bound on the robust stability margin of uncertain systems.

We were also able to substantially reduce the computational burden associated with LMI methods for
establishing robust stability. In Chapter 4, we describe efficient computational methods for determining
a guaranteed lower bound on the robust stability margin of uncertain systems.

4. Improved stability analysis and gain-scheduled controller synthesis.

The main results on gain-scheduled controller synthesis are described in Chapter 5.

1.2 Gain-scheduled control of the ONR UCAV

We have applied the results on gain-scheduled controller synthesis towards the control of the ONR Unmanned
Intelligent Autonomous Air Vehicles (UCAVs). The models that we have used are from the research team
from Texas A&M University, led by Professors Junkins, Ward and Valasek. The results from this effort are
described in Chapter 6.




1.3 Robust estimation

A second research direction that is relevant to Dr. Moshfegh’s project was identified during the January
semi-annual program review, held in January 1999.

Estimation problems arise in many naval applications in control, communications and signal processing
areas. Traditional estimation algorithms are usually based on a nominal system model without uncertainty.
However, in many cases, there exist uncertainties in model parameters and even model structures because of
modeling errors from system identifications. These uncertainties may degrade the estimation performance
of the algorithm without robustness.

Figure 1.2 shows a block diagram of the problem setting. The subscript “A” is used to indicate that the
plant parameters are affected by the uncertainties A. The objective is to design a filter for obtaining optimal
estimates 2 of the signal of interest z, with different optimality criteria. Chapter 7 describes the results of
our robust estimation efforts.

Yy
w Aa(k) | Ba(k) ) P
Ca(k) Da(k) 2z Filter
L(k) 0

Figure 1.2: Estimation for uncertain linear time-varying systems.
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Chapter 2

Robust performance analysis using
Lyapunov functions

A wide variety of problems in system and control theory can be formulated (or reformulated) as convex optimization
problems involving linear matrix inequalities (LMIs), that is, constraints requiring an affine combination of symmetric
matrices to be positive semidefinite. For a few very special cases, there are “analytical solutions” to these problems,
but in general they can be solved numerically very efficiently. Thus, the reduction of a control problem to an
optimization problem based on LMIs constitutes, in a sense, a “solution” to the original problem. The first objective of
this chapter is to provide a tutorial on the application of optimization based on LMIs to robust control problems. The
second objective is that of robust stability and performance analysis of uncertain systems using LMI optimization.

2.1 Introduction

A wide variety of problems in system and control theory can be reduced to a handful of standard convex
and quasiconvex optimization problems that involve linear matrix inequalities or LMIs, that is constraints
of the form

m
F(z) & Fo+ ) z:Fi >0, (2.1)

i=1

where z € R™ is the variable, and F; = FT € R"*", i = 0,...,m, are given. Though the form of the
LMI (2.1) appears very specialized, it turns out that it is widely encountered in system and control theory.
Examples include: multicriterion LQG, synthesis of linear state feedback for multiple or nonlinear plants
(“multi-model control”), optimal state-space realizations of transfer matrices, norm scaling, synthesis of
multipliers for Popov-like analysis of systems with unknown gains, robustness analysis and robust controller
design, gain-scheduled controller design, and many others. For a few very special cases there are “analytical
solutions” to LMI optimization problems, but in general they can be solved numerically very efficiently.
Indeed, the recent and growing popularity of LMI optimization for control can be directly traced to the
recent breakthroughs in interior point methods for LMI optimization (see for example, [NN94]-[VB96]). In
many cases—for example, with multi-model control [BEFB94]—the LMIs encountered in systems and control
theory have the form of simultaneous (coupled) Lyapunov or algebraic Riccati inequalities; using interior-
point methods, such problems can be solved in a time that is roughly comparable to the time required
to solve the same number of (uncoupled) Lyapunov or Algebraic Riccati equations [VB95]. Therefore the
computational cost of extending current control theory that is based on the solution of algebraic Riccati
equations to a theory based on the solution of (multiple, simultaneous) Lyapunov or Riccati inequalities is
modest.

A number of publications can be found in the control literature that survey applications of LMI optimiza-
tion to the solution of system and control problems. Perhaps the most comprehensive list can be found in
the book [BEFB94]. Since its publication, a number of papers have appeared chronicling further applications
of LMI optimization techniques in control; a few examples are [BE] and [VB97]. The growing popularity of
LMI methods for control is also evidenced by the large number of publications in recent control conferences.




Our first objective in this chapter is to give a brief introduction to optimization based on LMIs. In Sec-
tion 2.2.1, we describe a few “standard” convex and quasiconvex optimization problems involving LMIs. We
make a few brief remarks about solving LMI-based optimization problems in Section 2.2.2. In Section 2.2.3,
we present a brief history of LMIs in system and control theory.

Our second objective is that of robust stability and performance analysis of uncertain systems, with
various assumptions on the nature of the uncertainties (sector-bounded nonlinear, linear time-invariant,
parametric, etc.), as well as their structure (diagonal, block-diagonal, etc.). We first show, in Section 2.4,
how the robust stability analysis of such systems can be performed in a unified manner using multiplier
theory and LMI-based convex optimization. Not only does this provide a unification of several apparently-
diverse robust stability tests, but it also paves the way for developing new stability tests. In addition,
the multipliers used in the stability analysis can be shown to yield a convex parametrization of a subset of
Lyapunov functions that provide a certificate of robust stability. In Section 2.5, we show how these Lyapunov
functions can in turn be used to derive bounds on various robust performance measures for uncertain systems.
We illustrate our approach with two specific robust performance analysis problems.

2.2 Optimization Based on Linear Matrix Inequalities

Recall the definition of a linear matrix inequality:

m
F(e) 2 Fo+ ) z:F; >0,

i=1

where z € R™ is the variable, and F; = FT € R™", i = 0,...,m are given. The set {z | F(z) > 0}

is convex, and need not have smooth boundary. (We have used strict inequality mostly for convenience;

inequalities of the form F(z) > 0 are also readily handled.) :
Multiple LMIs Fi(z) > 0,..., Fo(z) > 0 can be expressed as the single LMI

diag (Fi(z),..., Fn(z)) > 0.

When the matrices F; are diagonal, the LMI F(z) > 0 is just a set of linear inequalities. Nonlinear
(convex) inequalities are converted to LMI form using Schur complements. The basic idea is as follows: the

LMI s
[ R ] o
where Q(z) = Q(z)7, R(z) = R(z)T, and S(z) depend affinely on z, is equivalent to

R(z) >0, Q(z) — S(z)R(z)"!S(z)” > 0. (2.3)

In other words, the set of nonlinear inequalities (2.3) can be represented as the LMI (2.2).
The matrix norm constraint ||Z(z)|| < 1, where Z(z) € R?*? and depends affinely on z, is represented

as the LMI
[ 2@y 1) ] >0

(since || Z|| < 1is equivalent to I—ZZT > 0). Note that the case ¢ = 1 reduces to a general convex quadratic
inequality on z.
The constraint

Tr S(z)T P(z)"1S(z) < 1, P(z) >0,

where P(z) = P(z)T € R"*" and S(z) € R"™*? depend affinely on z, is handled by introducing a new
(slack) matrix variable X = XT € R?*?, and the LMI (in z and X):

Tr X < 1, [Sii) ‘358?]%.

We often encounter problems in which the variables are matrices, e.g.,

ATP+PA<O, (2.4)




where A € R™*" is given and P = PT is the variable. In this case we will not write out the LMI explicitly
in the form F(z) > 0, but instead make clear which matrices are the variables. Leaving LMIs in a condensed
form such as (2.4), in addition to saving notation, leaves open the possibility of more efficient computation.

2.2.1 Some Standard LMI Optimization Problems

(i) LMI Feasibility Problems

Given an LMI F(z) > 0, the corresponding LMI feasibility problem is to find 22 such that F(z*) > 0
or determine that the LMI is infeasible. (By duality, this means: find a nonzero G > 0 such that TrGF; = 0
fori=1,...,m and Tr GF; < 0.) Of course, this is a convex feasibility problem.

(ii) Eigenvalue Problems

The eigenvalue problem is to minimize the maximum eigenvalue of a matrix, subject to an LMI:

min A
s.t. Al —A(z) >0, B(x)>0.

Here, A and B are symmetric matrices that depend affinely on the optimization variable z. This is a convex
optimization problem.

(iii) Generalized Eigenvalue Problems

The generalized eigenvalue problem is to minimize the maximum generalized eigenvalue of a pair of
matrices that depend affinely on the optimization variable, subject to an LMI constraint. The general form
of a generalized eigenvalue problem is:

min A

st.  AB(z)— A(z) >0
B(z) >0
C(z)>0

where A, B and C are affine functions of z. This is a quasiconvex problem.

Note that when the matrices are all diagonal, this problem reduces to the general linear fractional
programming problem. Many nonlinear quasiconvex functions can be represented in the form of a generalized
eigenvalue problem with appropriate A, B, and C (see [BE93]).

2.2.2 Solving LMI-Based Problems
The most important point is:
LMI feasibility, eigenvalue and generalized eigenvalue problems are all tractable

in a sense that can be made precise from a number of theoretical and practical viewpoints. (This is to be
contrasted with much less tractable problems, e.g., the general problem of robustness analysis for a system
with real parameter perturbations.)

From a theoretical standpoint:

e We can immediately write down necessary and sufficient optimality conditions.

e There is a well-developed duality theory (for generalized eigenvalue problems, in a limited sensé).

e These problems can be solved in polynomial time (indeed with a variety of interpretations of the term
“polynomial-time”).

The most important practical implication is that there are effective and powerful algorithms for the
solution of these problems, that is, algorithms that rapidly compute the global optimum, with non-heuristic
stopping criteria. Thus, on exit, the algorithms can prove that the global optimum has been obtained to
within some prespecified accuracy.

There are a number of general algorithms for the solution of LMI problems, for example, the ellip-
soid algorithm (see e.g., [BB91] and [BGT81]). The ellipsoid method has polynomial-time complexity, and
works in practice for smaller problems, but can be slow for larger problems. Other algorithms specifically
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for LMI-based problems are discussed in, e.g., [CDW75] and [Ove88]. More recently, various researchers
([A1i95]-[VB96]) have developed interior point methods for solving LMI-based problems, based on the work
of Nesterov and Nemirovskii [NN94]. Numerical experience shows that these algorithms solve LMI problems
with great efficiency. A survey of algorithms and software for LMI optimization can be found in [VB97].

A number of software packages are also available for solving LMI problems. The first implementation of
an interior-point method for LMI problems was by Nesterov and Nemirovskii in [NN90], using the projective
algorithm [NN94]. Matlab’s LMI Control Toolbox [GNLC95] is based on the same algorithm, and offers a
graphical user interface and extensive support for control applications. The code SP [VB94] is based on a
primal-dual potential reduction method with the Nesterov and Todd scaling. The code is written in C with
calls to BLAS and LAPACK and includes an interface to Matlab. SDPSOL [WB96] and LMITOOL [END95]
offer user-friendly interfaces to SP that simplify the specification of LMI problems where the variables have
matrix structure. The Induced-Norm Control Toolbox [Ber95] is a toolbox for robust and optimal control,
in turn based on LMITOOL.

2.2.3 Brief History of LMIs in System and Control Theory

The history of linear matrix inequalities in the analysis of dynamical systems goes back more than 100 years,
when Lyapunov published his seminal work introducing what we now call Lyapunov theory. He showed that
the differential equation

d
(—ﬁm(t) = Az(t) : (2.5)
is stable if and only if there exists a positive definite matrix P such that
ATP4+PA<O. (2-6)

The requirement P > 0, ATP + PA < 0 is what we now call a Lyapunov inequality on P, which is a special
form of an LML Of course, we can solve this LMI (that is, find a suitable P) by solving a Lyapunov equation.

The next major development was in the 1940s when Lur’e, Postnikov, and others in the Soviet Union ap-
plied Lyapunov’s methods to some specific practical problems in control engineering, especially, the problem
of stability of a control system with a nonlinearity in the actuator [Lur57]. Although they did not explic-
itly form matrix inequalities, their stability criteria in fact have the form of LMIs. These inequalities were
reduced to polynomial inequalities which were then checked “by hand” (for, needless to say, small systems).

Then, in the 1960s, Yakubovich, Popov, Kalman, and other researchers succeeded in reducing the solution
of the LMIs that arose in the problem of Lur’e to simple graphical criteria, using what we now call the
Kalman-Yakubovich-Popov (KYP) lemma. This resulted in the celebrated Popov criterion, Circle criterion,
Tsypkin criterion, and many variations. These criteria could be applied to higher order systems, but did
not gracefully or usefully extend to systems containing more than one nonlinearity. Thus, their contribution
may be viewed—in the context of the history of LMIs in control theory—as showing how to solve a certain
family of LMIs by a graphical method. We should note that the important role of LMIs in control theory
was already recognized in the early 1960s, especially by Yakubovich [Yak67].

By 1971, researchers knew several methods for solving special types of LMIs: direct (for very small
systems), graphical methods, and by solving Lyapunov or Riccati equations. In Willems’ 1971 paper [Wil71]
we find the following striking quote:

The basic importance of the LMI seems to be largely unappreciated. It would be interesting to
see whether or not it can be exploited in computational algorithms, for example.

Willems’ suggestion that LMIs might have some advantages in computational algorithms became closer to
being realized with the following observation:

The LMIs that arise in system and control theory can be formulated as conver optimization
problems, and hence are amenable to computer solution.

This observation was made explicitly by several researchers: Pyatnitskii and Skorodinskii [PS82], and Ho-
risberger and Belanger [HB76], to name just a few. This observation, coupled with the development of
interior point methods that apply directly to convex problems involving matrix inequalities, by Nesterov and
Nemirovskii in 1988, now mean that we can reliably and quickly solve many problems in systems and control
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for which no “analytical solution” has been found (or is likely to be found), by reducing to them to LMI
problems. The efficient solution of LMI optimization problems as well as the numerical solution of several
diverse engineering problems via LMI optimization remain areas of active research.

2.3 Robust Stability and Performance Analysis of Uncertain Sys-
tems: Overview

Most control system models in use today explicitly incorporate in them “uncertainties” or “perturbations”.
These uncertainties may model a number of factors, including: dynamics that are neglected to make the
model tractable, as with large scale structures; nonlinearities that are either hard to model or too complicated;
and parameters that are not known exactly, either because they are hard to measure or because of varying
manufacturing conditions. A widely-used model for uncertain systems, shown in Fig. 2.4, consists of a
nominal finite-dimensional, stable, linear time-invariant system, with a perturbation or uncertainty A in a
feedback loop. The signal w represents exogenous inputs, and z represents all outputs of interest. Often
additional information about A is either known or assumed; common examples are that A is diagonal or
block-diagonal; sector-bounded memoryless, linear time-invariant or parametric; bounded in norm, passive,
etc. The analysis of and design for such control system models is commonly referred to as “robust control
with structured perturbations”.

One of the most fundamental questions concerning the system in Fig. 2.4 is that of stability: “Is the
model stable irrespective of the perturbation A, that is, do all solutions of the system equations go to zero,
irrespective of A?” This is also referred to as the robust stability problem. Some of the approaches for solving
this problem, with various assumptions on A, are the use of the small-gain, passivity or circle-criteria [DV75],
the Popov criterion [LP44], and p or K,, analysis methods ([Doy82]-[CS92]). Robust stability is but one
desired feature of an uncertain system; of considerable importance are questions beyond stability, known
broadly as robust performance problems. Robust performance analysis problems concern the computation
of the worst possible value, over all uncertainties, of performance indices; these performance indices may be
bounds on some state variables, norms of the map from w to z etc. An example of a robust performance
analysis problem is the so-called Hy problem, which is the computation of the largest possible RMS value
of the output z, over all A, when the input w is unit-intensity white noise. This finds application where the
average value of a certain signal is of interest, when the system is affected by an unpredictable input that
is modeled as white noise. Another example is the computation of the largest possible RMS gain, over all
uncertainties, from w to z; this is also known as the H,, performance analysis problem.

It has been found recently that several stability analysis methods for control systems can be unified in
the setting of multiplier theory ([DV75] and [SC93]-[GS95]), or more generally, in the framework of integral
quadratic constraints or IQCs [MR97]. (While the framework of IQCs is more general than the multipier-
based framework, we have chosen to present the latter here for “historical” reasons.) As a consequence,
several sufficient conditions for robust stability can be performed without frequency sampling, using convex
optimization techniques based on LMIs [Bal95]; we describe this in Section 2.4. It also turns out that
the multiplier techniques yield a convex parametrization of a set of Lyapunov functions that prove robust
stability [Bal94a]. By imposing additional conditions on these Lyapunov functions, bounds on the robust
performance for the system in Fig. 2.4 can be derived; thus Lyapunov functions can be used to “prove” robust
performance as well. The “best” performance bounds can then be obtained by numerically optimizing these
bounds, using LMI-based methods, over the set of Lyapunov functions that prove robust performance. We
describe this approach in Section 2.5.

2.4 Robust Stability Using Multiplier Theory

Let the equations governing the system in Fig. 2.4 be:

L 2(t) = Aa(t) + Byp(t) + Buw(®), a(t) = Cya(t) + Dypp(t), () = Coa(®),  (27a)

dt
p(t) = —A(g, 1), (2.7b)

where z(t) € R", p(t) € R, q(t) € R"¢, w(t) € R" and z(t) € R"*. For convenience, we have assumed
that there is no feed-through from w to z, w to ¢ and p to z; we will also assume that n, = n, = m. For
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future reference, we let £ denote the linear system (2.7a), and G the transfer function of the linear part of
the system from p to ¢, i.e., G(s) = Cy(sI — A)"*B, + Dgp. L is assumed to be stable. Equations (2.7) can
be interpreted either as representing a “family of systems”, each member corresponding to some A, or as an
“uncertain system” with uncertainty A; we will use these terms interchangeably. The perturbation A is in

general nonlinear, and is assumed to be passive, that is, the following holds®:

For some € > 0 and § € R,

T T
/ u(t)T (Au)(t) dt > € / u(t)Tu(t) dt — B for all T > 0 and all u € L.
0 0

We let D denote the set of all passive operators A.

w z
p L q
—~1
A <

Remark 2.4.1 Another frequently encountered class of uncertainties are bounded uncertainties, that is,
those A with an Ly gain that does not exceed some ¥ > 0. However, it is well-known (for example,
see [And72] that under standard assumptions, one may use loop transformations to transform the case of

"norm-bounded A to the case of passive A considered here.

We say that the family of systems (2.7) is robustly stable if with w identically zero, for every member
of the family and for every initial condition, every solution z(t) of (2.7) satisfies lim;-.oo 2(t) = 0. Our first
objective is to show how the robust stability analysis of the family of systems (2.7) can be performed using

LMI optimization.

2.4.1 Robust Stability from the Passivity Theorem

Since A is known to be passive, the passivity theorem [DV75] can be invoked to establish robust stability of
the system (2.7):

The uncertain system (2.7) is robustly stable if the (linear) map from p to g is strictly passive,
that is, there exist ¢ > 0 and 8 € R such that for all p € Ly, the condition

T T
/ p(t)Tq(t) dt > e/ p(t)Tp(t) dt — B for all T > 0
0 0

holds, where p and q satisfy (2.7a) with w identically zero.

Strict passivity of the map from p to g is equivalent [DV75] to the frequency-domain condition that for
some € > 0,
G(jw) + G(jw)* > 2¢l  forallw € R. (2.8)

(If this holds, we will say with some abuse of terminology that “G(s) is strictly passive”.) This condition
can be numerically verified (approximately) by checking that the minimum eigenvalue of G(jw) + G(jw)*,
sampled at a number of frequencies, is positive. An alternate condition for strict passivity that avoids
frequency sampling is expressed in terms of an LML

% For precise technical definitions, mathematical preliminaries, and the notation used here, see [DV75] and [Vid93].
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Lemma 2.4.1 Let (4, By, Cy, Dgp) be a state-space realization of a stable linear system with transfer
function G(s). Then, G satisfies (2.8) if and only if there exists P = PT > 0 satisfying the LMI

[ ATP+PA PB,-CT

BTP-C, —(Dygp +DT) } <0. (2:9)

This is simply the Kalman-Yakubovich-Popov Lemma or the Positive-Real Lemma (see for example, [NT73],
[Vid93], pages 474-478, and [AV73], Chapters 5-7; see also [Ran96]).

Remark 2.4.2 We also have the following extension of Lemma 2.4.1. Let (A, By, Cy, Dyp) be a realization
of a not necessarily stable linear system with transfer function G(s), with A having no eigenvalues on the
imaginary axis. Then, G satisfies condition (2.8) if and only if there exists P = PT satisfying the LMI

T _T
[A P+PA PB,-C ]<0 (210)

BTP-C, —(Dgp+ DT,

2.4.2 Multiplier Analysis

Suppose A € D also possesses additional properties, such as being diagonal or block-diagonal, sector-bounded
memoryless, linear time-invariant or parametric, etc. Let Dseruct © D denote the set of A satisfying these
additional properties. (We will see two specific cases for Dgtruct 1n Example 2.5.1 and Example 2.5.2.) Then
the passivity theorem yields only a sufficient condition for robust stability. In this case, we can employ
multiplier theory to utilize the additional information on A in order to obtain less conservative conditions
for robust stability; see for example, [DV75) and [SC93]-[Bal95].

1 A |
wo L Lz
L £ .
b W (—e) T o Wa(s) i |
1 ]
1 ]
1—14 1
: W_(=o) |¢ A | Wa(s)™ |4 :
] 1
1 |
] R ]
] i
1 A 1

Consider the system in Fig. 2.4.2, where W..(s) and W_ (s) are transfer functions of some finite-dimensional
LTI systems. Moreover, suppose that W (s) and W_(s) satisfy

W, (s) and W_(—s) are stable with stable inverses. (2.11)
The equations governing the system in Fig. 2.4.2 are:
d
Em(t) = Az(t) + Bop(t) + Buw(t), q(t) = Cz(t) + Dgpp(t), 2(t) = Caa(t), (2-12a)

p(t) = —A(g,1), B(t) = (WX xp)(t), 4(t) = (w4 *xq)(1), (2.12b)

where w™ and wy are the inverse Laplace transforms of W_(—s)T and Wy (s) respectively, and “x” denotes
convolution.
We have the obvious but important connection between the solutions of the equations (2.12) and (2.7).

14




Lemma 2.4.2 For every A € Dygruct, & satisfies (2.7) if and only if it satisfies (2.12) for some (every) Wy
. and W_ satisfying condition (2.11). Therefore, system (2.7) is robustly stable if and only if system (2.12) is
robustly stable, for some (every) Wy and W_ satisfying condition (2.11).

Next, suppose that
for every A € Dypruct, W-(—5)T 0 Ao Wy (s)™! is passive. (2.13)
Then from the passivity theorem, system (2.12) is stable if
W, (s)G(s)W_(—s)~T is strictly passive. (2.14)

Thus, if we find some W, and W_ such that conditions (2.13) and (2.14) hold, we have then established
the robust stability of system (2.7). Robust stability methods using multiplier theory involve systematically
searching for W, and W_ satisfying (2.11) such that conditions (2.13) and (2.14) hold. Every pair of such
W, and W_ is called a “multiplier pair proving robust stability”.

It turns out that searching directly for Wy and W_ is numerically “hard”, as the set of multiplier pairs
that prove robust stability is nonconvex in general.

Remark 2.4.3 Numerical counterexamples that establish that the set of constant multiplier pairs that prove
robust stability is not necessarily convex are easy to find. Here is a simple one, with G being a linear system
with no dynamics, 1.e., with transfer matrix a constant:

1.30 0.30 —0.40
G(s)=| 020 050 010 |.
~0.10 —0.60  0.80

For this system, it is easily checked numerically that the multiplier factors with no dynamics

070 0 0 070 0 O 1.2 0 O 1.2 0 0
0 1.0 0], 0 10 0 and 0 -15 04, 0 ~-15 0
‘ 0 0 13 0 0 13 0 0 0.3 0 0 03

both prove robust stability, but their average
0.95 0 0 0.95 0 0
0 —-0.25 01, 0 -0.25 0
0 0 0.80 0 0 0.80

2.4.3 Robust Stability via LMI Feasibility Tests

A simple change of variables enables the reformulation of the problem of search of multiplier pairs into
a convex feasibility problem. The central idea underlying the reformulation is that we should regard the
product W(s) 2w (s)W,(s) as the variable; this product, which we shall denote by W(s) is called the
stability multiplier or just “multiplier”. We will say that the multiplier W “proves robust stability” if it
can be factored into W(s) = W_(s)W4(s), with the pair {W_, W} proving robust stability, i.e., such that
conditions (2.11), (2.13) and (2.14) hold. It can be shown (see [Bal95] and [CTB97a] for details) that these
conditions are equivalent, in several important cases, to the following conditions:

does not.

o W should have a certain structure (e.g., diagonal or block-diagonal) and nature (e.g., con- (2.15)
stant, Hermitian on the imaginary axis, etc.), depending on the additional information
known about Dggrycr. (For specific examples, see [Bal95].)

o For some ¢ > 0, W(jw) + W(jw)* > 2¢l forallw € R . (2.16)
e For some ¢ > 0, W(jw)G(jw) + G(jw)* W (jw)* > 2¢I for allw € R. (2.17)
. Thus, establishing robust stability using multiplier theory involves numerically searching for a multiplier

W that satisfies conditions (2.15)-(2.17) above. The important observation regarding this reformulation is
the following.
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Finding W that satisfies conditions (2.15)-(2.17) is a (possibly infinite-dimensional) convez fea-

. sibility problem.

Additionally restricting W, if necessary, to lie in a finite-dimensional subspace results in a finite-dimensional
convex feasibility problem. Specifically, suppose that W is restricted to lie in the subspace

w2 {iaiwi

i=1

6 e R’”} , (2.18)

where W; are fixed transfer matrices, each satisfying the structure and nature condition that is to be satisfied
by W (see (2.15)). Then, every W € W has a realization (Aw, Bw, Cw(0), Dw()), with Cw and Dw
being linear functions of #. Using the remark following Lemma 2.4.1, we conclude that condition (2.16) is
equivalent to the LMI in Pw = PVTV and 6:

AL Py + Py A PwBw — Cw(8)T
[ B?VP‘;VV - C“\;/(o“)/ —(lng(vg) + DV:\,(Q)T) ] <0. (2.19)

Next, WG has a state-space realization (Awa, Bwe, Cwa, Dwg) where

A 0 B
AWG=[BWC Aw ], BWG(9)=[BWD],

Cwe = [Dw(6)C Cw(8)], Dwe(8) = Dw(0)D.

Note that Cwg and Dw¢ are linear functions of §. Then, checking condition (2.17) is equivalent to the LMI
in P= PT and ¢:
A’Iv;,GP + PAwg PBwg — ng(g)T ] <0 (2 20)
B%GP — CWG(Q) — (DWG (6) + Dwea (H)T) ’ ’

Thus sufficient conditions for robust stability, in several important cases, can be posed as the following

. feasibility problem:
Find Py, P and 0 such that the LMIs (2.19) and (2.20) hold. (2.21)

The above formulation of robust stability tests is important in several different ways:

(i) Robust stability can be ascertained using state-space techniques and reliable convex optimization; there
is no frequency sampling involved with LMI tests.

(ii) A number of classical and modern robust stability tests can be unified in this setting (for example,
several tests for absolute stability, as well as the modern y tests; see [Bal95]).

(iii) New tests can be devised, when other assumptions on the uncertainties are in effect (see for exam-
ple, [TBL99], as well as [MR97]).

In addition, the LMI tests for robust stability can be shown to yield Lyapunov functions that “prove”
robust stability (see for example [Bal94a]). These Lyapunov functions can in turn be used to derive bounds
on robust performance. We describe this next.

2.5 Robust Performance Bounds from Lyapunov Functions

The multiplier-based robust stability condition (2.21) can be shown to yield a positive-definite function
V : R" x Ry — Ry such that dV(z,t)/dt < 0 along the trajectories of (2.7). (This function V can be
constructed from the LMI variables P, Pw and 8; we will see a demonstration of this in Example 2.5.1 and
Example 2.5.2.) Using standard arguments from Lyapunov theory, it can be shown that V' is a Lyapunov
function that provides a certificate or guarantee of robust stability. Additional conditions on the Lyapunov
function can be imposed, yielding robust performance bounds as follows (see for example [AC84], Section 6,
and [BEFB94]): For a given initial condition 2(0) for the linear part (2.7a), suppose that the Lyapunov
. function V satisfies

%V(z,t) < —¢a(z(t), w(t), 2(t)) along the trajectories of (2.7). (2.22)
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Then it is a simple exercise to show that
o -
V (z(0),0) 2/ dalz(t), w(t), z(t)) dt, (2.23)
0
or we have an upper bound on the performance index
Po2 [ dula(t) wlt), 2(0) d. (2:24)
0

Thus, if we can find a Lyapunov function V satisfying (2.22), then we can obtain upper bounds on robust
performance indices of the form (2.24), for system (2.7). (A variation of this technique can be used to obtain
bounds on more general performance measures; see for example [BEFB94], Chapters 5-6.)

We will see in Example 2.5.1 and Example 2.5.2 that imposing condition (2.22) on the Lyapunov functions
obtained from multiplier theory leads to LMI conditions in several important cases. Consequently, in all these
cases, the problem of computing the optimal (or smallest) robust performance bound can be reformulated
as an LMI optimization problem.

Example 2.5.1 Unstructured Passive A, Bound on the Output Energy
Consider the case when A is a general passive operator, with the performance analysis problem being:

With w = 0, find a bound on the energy of the output, i.e., f;~ z(t)T2(t) dt, for a given initial
condition z(0) of the state of the linear part of the system.

In order to derive upper bounds on fooo 2(t)T 2(t) dt, we seek Lyapunov functions that satisfy condi-
tion (2.22) with ¢4(z,w,z) = 27z, ie,,

d
ZV(2,) < 207 (). (2:25)

. Then V(z(0),0) yields an upper bound on the output energy.
Since A is a general passive operator, the only possible multiplier pair is given by Wy = W_ = I. The
corresponding Lyapunov functions turn out (see [Wil72a] and [Wil72b]) to be of the form

V(z,t) = z(t)T Pz(t) - 2/0 p(1)Tq(7) dr,

where P > 0. Condition (2.25) holds along the trajectories of system (2.7) if the following condition holds:

ATP+PA+CTC, PB,—CT ]
: .. | <o 2.26
BTP-C, —~(Dgp +DT) | = (2.26)

Thus, the best upper bound on the energy of z, for a given initial condition z(0) of the linear part of the
system, is simply
min z(0)T Pz(0)
s.t. P >0, and (2.26)

This is an “eigenvalue problem” (see Section 2.2.1).

Example 2.5.2 Diagonal, Time-Invariant, Sector-Bounded, Memoryless Nonlinearities A, Bound
on the State Variables

Next, consider the case when: D, is zero; the uncertainty A is diagonal, i.e., pi(t) = —6;(qi(t)); and
each §; is a time-invariant, memoryless nonlinearity in sector [0,00) (see [DV75] for the definitions of the
various terms used here). For this case, the performance analysis problem considered is:

. With exogenous input w = 0, find bounds on the state z(t), ¢ > 0, of the linear part of the
system, for a given initial condition z(0).
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In other words, we seek an invariant set for the trajectories z(t) of the linear part of the system. For
every positive-definite function V for which dV(z,t)/dt < 0 holds along the trajectories of system (2.7), we
have

V(z(t),t) < V(2(0),0) for ¢ > 0.

This inequality can then be used to derive bounds on z(t).
For the case of diagonal, time-invariant, sector-bounded, memoryless nonlinearities, the multiplier pairs
for robust stability turn out to be W_ =T and

W+(S) = diag ((/\1 + Ills), ey (/\m + Hms));

where p; > 0, A; > 0. (This corresponds to a multivariable version of the Popov criterion [DV75].) The
corresponding Lyapunov functions are of the form

Viz,t) = z(t)TPx(t)+22#: /qi 6i(o) d0~22’\ / pi(m)ai(r) dr,

i=1

where P > 0, p; > 0 and A; > 0. In this case, condition dV(z,t)/dt < 0 is equivalent to the LMI

T _ T
[ ATP+ PA PB, — (ACy + MC,A) ] <0 (2.27)

BZP - (ACq+ MCjA) —(MC,B, + BEC;,TM)
where P > 0, M = diag(p1,...,4m) > 0 and A = diag(Ay,...,An) > 0. If condition (2.27) holds, then

the ellipsoid
E={yveR" [¢yTPy < z(0)TPz(0)}

is an invariant ellipsoid for the state z.
The problem of finding the smallest invariant ellipsoid (using our techniques), i.e., one with the smallest
major axis, can be solved by solving the “eigenvalue problem” (see Section 2.2.1)

max v

st. P>vI, z(0)TPz(0) <1, (2.27),
M = diag(u1,...,um) >0, A=diag(A1,...,An) >0

With P,p: denoting the optimal P, the smallest invariant ellipsoid that contains the state z(¢) for allt > 0
is

{d’eR“ |"/)TPopt¢S 1}
2.6 Conclusions

We have provided an introduction to optimization based on Linear Matrix Inequalities, and demonstrated
its application in robust stability and performance analysis of uncertain systems.
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Chapter 3

Robustness under Bounded
Uncertainty with Phase Information

We consider uncertain linear systems where the uncertainties, in addition to being bounded, also satisfy
constraints on their phase. In this context, we define the “phase-sensitive structured singular value”
(PS-SSV) of a matrix, and show that sufficient (and sometimes necessary) conditions for stability of
such uncertain linear systems can be rewritten as conditions involving PS-SSV. We then derive upper
bounds for PS-SSV, computable via convex optimization. We extend these results to the case where the
uncertainties are structured (diagonal or block-diagonal, for instance).

3.1 Introduction

Consider the model of a control system with uncertainty, shown in Fig. 3.1. Here P(s) is the transfer
function of a stable linear system, and A is a stable operator that represents the “uncertainties” that arise
from various sources such as modeling errors, neglected or unmodeled dynamics or parameters, etc. As we
noted in Section 2.3, such control system models have found wide acceptance in robust control.

Y

P(s)

Figure 3.1: Closed-loop system

It is often the case that the uncertainty A is linear, time-invariant (LTI), and diagonal. In this case,
unity-bounded Lj-gain and passivity assumptions on A can be interpreted as knowledge on the frequency
response of each diagonal entry §;; of A: the Nyquist plot of §; lies inside the unit-disk and in the right-half
complex plane, respectively. There are instances where it is appropriate to model é;; as having its Nyquist
plot entirely contained within some acute sector, of aperture 26 < m. Such a sector can be assumed, without
loss of generality (via simple loop transformation), to be a proper subset of the right-half plane. This can
occur when modeling is done from experimental data and the “Nyquist cloud” is better approximated by a
sector portion of a disk than by a full disk; see Example 3 in §3.5. It can also occur when the uncertainty,
due to several uncertain parameters, is “lumped” into a single dynamic uncertainty block; in this case, the
approach presented in this chapter would result in significant computational savings in comparison with the

0 Joint work with Professor A. L. Tits, University of Maryland, and Professor L. Lee, National Sun Yat-Sen Univ., Taiwan
R.O.C.
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direct approach; see Example 2 in §3.5. In both instances conservativeness can often be further reduced
by allowing for frequency dependent sectors. Investigation of robust stability under such “uncertainty with
phase information” is another objective of this chapter.

Uncertainty is often best represented by a set of full matrices (or block-diagonal matrices), and handling
this situation in our framework necessitates a concept of “phase of a matrix”. Several authors have proposed
such concepts. In [PEM81], the “principal phases” of a matrix are defined as the arguments of the eigenvalues
of the unitary part of its polar decomposition, and a “small phase theorem” is derived that holds under rather
stringent conditions. Hung and MacFarlane, in [HM82], propose a “quasi-Nyquist decomposition” in which
the phase information of a transfer matrix is obtained by minimizing a measure of misalignment between
the input and output singular vectors. Finally, Owens, in [Owe84], uses the numerical range to characterize
phase uncertainty in multivariable systems. The concept of phase we adopt here is related to that of [Owe84].
Our definition not only serves to characterize phase uncertainty in multivariable systems, but also provides
a practical and tractable way of using uncertainty phase information in robustness analysis.

Thus, in this chapter, we consider the robust stability of the system in Fig. 3.1 when A is a block-diagonal

LTI uncertainty that simultaneously satisfies constraints on its norm, and on its “phase”. In §3.2, we define
the phase-sensitive structured singular value (PS-SSV), defining in the process the phase of a matrix. We
then derive a condition for robust stability of the system in Fig. 3.1 in terms of the PS-SSV. It turns out
that when the uncertainty is scalar, or made of diagonal scalar blocks, the PS-SSV-based condition on
robust stability is both necessary and sufficient. Computing the PS-SSV exactly turns out to be an NP-hard
problem. We therefore concentrate on computing an upper bound on the PS-SSV, in §3.3. In §3.4, we
show that computation of this upper bound can be reformulated as a quasi-convex optimization problem;
we discuss some schemes for its solution. In §3.5, we demonstrate our results via three numerical examples,
and we conclude with §3.6. Many of the ideas developed in this chapter were adapted from earlier work
by two of the coauthors and M. K. H. Fan, see [LTF89, LT92b, LT92a, Lee92]. Results closely related to
those of §3.1 were obtained independently by Eszter and Hollot [EH97] for the case when the phase bounds
amount to a passivity constraint on the uncertainty.
Notation. R, R, and R, denote the sets of real numbers, nonnegative real numbers, and R U{co} (one point-
compactification of R), respectively. C, C;. and Cy. denote the set of complex numbers, complex numbers
with positive real part (i.e., the open right-half complex plane), and Cy U {oo} respectively. H, denotes
the set of scalar- or matrix-valued functions that are analytic and bounded in the open right half plane,
and RH,., denotes the set of functions in H, that are real rational. H* denotes the complex-conjugate
transpose of H € C™*". For H € C**" satisfying H = H*, the notation H > 0 (H > 0) means that H is
positive-semidefinite (positive-definite).

3.2 The phase-sensitive structured singular value

3.2.1 Scalar Case

Let us first consider the case when both the LTI system and the LTI uncertainty in Fig. 3.1 have a single
input and a single output. Thus P(s) and A(s) are scalar transfer functions, and to emphasize this, we
rename them as p(s) and 6(s), respectively.

Let ¢ : C — (—m, 7] be the usual phase of a complex scalar, with ¢(0) defined to be 0. Note that |¢(-)]
is lower semicontinuous (and continuous outside every neighborhood of the origin). Given a complex scalar
m and a real scalar 6 € [0, 7], let zg(m) be defined by

po(m) = (inf {J| : $(1)] <6, 1+ym =0},

if the set over which the infimum is taken is nonempty, and pg(m) = 0 otherwise (i.e., ug(m) = |m| if
|#(m)| > 7 — 6, and 0 otherwise). Note that us(m) is upper semicontinuous in (6, m).

Theorem 1 below shows that various properties of the closed-loop system depicted in Fig. 3.1 can be
assessed from the knowledge of yg (p(s)) on the imaginary axis, under various assumptions on 6.

Theorem 1 Let p € Hoo be continuous over Cye, let § : Re — [0, 7], and let

Ay = {6 € Hy, : 8 is continuous on Cye, [|6]jcc < 1, [¢(8(w))] < O(w) Yw € R.}.
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Suppose that

(a) supweﬂxeﬂﬁ(w)(p(jw)) <1l
Then (14 6p)~! € Hyo for all 6 € Ay and, if 6 is upper semicontinuous,

sup [|(1 + &p) ™! |leo < oo (3.1)
€D

Moreover, if 0 is constant, then statements (a), (b) and (c) are equivalent, where (b) and (c) are as follows:
(b) (14 6p)~' € He for all § € Ag and supsea, ||(1+ 6p) 7o < 0.
(c) (1+6p)~t € Hyo for all 6 € RHo, N Ag and supserm.. na, |I(1+8p) oo < 0.

Proof: We first prove by contradiction that (a) implies that (14 6p)~" € Ho for all § € Ay. Thus suppose
that, for some 6 € Ay, (1+6p)~" ¢ Heo. It follows from Cauchy’s Principle of the Argument, using a simple
homotopy (see, e.g., Lemma 1 in [Tit95, TB97] for details) that there exists & € (0,1] and & € R such that

1+ ab(j@)p(i@) = 0.

Since 6 € Ay, it is clear that |@6(j&)| < 1 and [#(ab(j@))| < O(@). Thus pgwy(p(j@)) > 1, a contradiction.
To complete the proof of the first claim, suppose that 8 is upper semicontinuous and, proceeding again by
contradiction, suppose that (1 + 6p)~! € H, for all § € Ag but that, given any € > 0 there exist b €A
and w, € R such that

|14 8e(we)p(we)| < e.

Let 4 = 8¢(jwe) and note that, since 6. € A,
[$(7e)l < B(we)-

Since |v.] < 1 it follows from compactness of the complex unit disk, continuity of p on jRe, lower semicontinu-
ity of |¢| and upper semicontinuity of 8 that there exits 4 € Cy. and & € Re such that [§] < 1, [¢()] < (&)
and 1+9p(jw) = 0. Thus pes)(p(j©)) > 1, a contradiction. To complete the proof of the theorem, first note
that the implication (b)=>(c) holds trivially. Suppose now that 6 is constant. The implication (a)=>(b) has
just been proven. It thus remains remains to show that (c)=>(a). We again use contradiction. Thus assume
that

sup pe(p(jw)) > 1.
wER.

We show that, given any € > 0, there exists 6§ € AgNRHe, and & € R, such that |1+ 6(G@)p(iw)| < e,
a contradiction. Let & € R, be such that us(p(j@)) > 1 (since p is continuous on jR. and pe(-) is upper
semicontinuous, such & always exists). Thus, for some ¥ € Cy, with |§] < 1 and |#(%)| < 8, 1 + Fp(i@) = 0.
Note that, if § = 0, the claim holds trivially (take 3(3) = ¥ for all s); thus assume that 6 > 0. Since p is
continuous on jRe, there exist & € R\ {0} and 4 € {y € C; : || < 1,]6(7)| < 8} such that |1+ Fp(jo)| < €.
It is shown in Appendix A that, under these conditions, there exists 6 € Ag NRH,, such that 5(_](2:) = 7.
This completes the contradiction argument. (u]

Remark 3.2.1 The upper semicontinuity assumption on 0 is indeed needed in order for (8.1) (uniform
robust stability) to follow, as shown by the following ezample. Let p(s) = 2(s + 1)/(s +2). Let & be the
frequency at which the phase of p(jw) is largest (in the first quadrant) and let ¢ be its value. Define 6 by
6(@) = /2 and O(w) = 7 — ¢ for all other w. It is readily checked that pig(.)(p(jw)) = 0 for allw but that
1+ p(jw)é(jw) can be made arbitrarily close to 0 in the neighborhood of w.

Remark 3.2.2 The sufficiency part of Theorem 1 can be extended to handle more general uncertainty sets.
See remark immediately following Theorem 3.

We leave open the question of necessity of condition (a) of Theorem 1 under relaxed assumptions on 6.
It may be necessary, e.g., to require that f(w) not approach zero too fast.
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3.2.2 The matrix case with structure
Phase and phase-sensitive structured singular value

As a first step toward extending the results of §3.2.1 to matrix-valued P and A, we propose a concept of

phase of a matrix.
Given a complex matrix T, let A'(I') be its numerical range, i.e.,

N({)={2Tz : € 6B} CC

where 9B = {z € C* : ||z||z = 1} and || - ||2 is the Euclidean norm. This set is known to be convex. The
following definition is a slight modification of that used in [Lee92].

Definition 1 Let T' # 0 be a complez square mairiz such that 0 ¢ intAV'(T'). The median phase MP(T') of T
is the angle, with a range of (—m, 7], between the positive real axis and the ray bisecting the smallest sector
containing N'(T'). The phase spread PS(T') of T is half the angle of this sector (see Fig. 3.2). We define
MP(0) and PS(0) to be 0.

Figure 3.2: Numerical range, median phase and phase spread.

Thus MP(T') € (-, 7} and PS(T) € [0, 7/2]. Below we will refer to the pair (MP(T'), PS(I')) as phase
information of T'. If 0 € intAV/(T'), there is no phase information for I'.

Note that in the case of a complex number a = pe/® with p > 0 and ¢ € (—, 7], the phase information
of a is (¢,0). Also, the phase information of a matrix is invariant under multiplication of the matrix by a
positive number, and if ' is Hermitian positive semidefinite, its phase information is (0, 0). Finally, the phase
information of a matrix is invariant under unitary similarity transformations (since the numerical range is).

Median phase and phase spread are related to the concept of principal phases introduced by Postlethwaite
et al. in [PEM81]. Namely, for any square complex matrix T',

MP(T) — PS(T) < min(T) < ¥max(T) < MP(T) + PS(T)

where ¥min(I') and Ymax(L) are the minimum and maximum principal phases of I, respectively. This result,
stated differently, was obtained by Owens [Owe84] (who also used the term “phase spread”).

For any matrix ' with 0 ¢ intA/(T), N (e7?MP(DT) € C;.. In other words, we can rotate the numerical
range of any matrix I for which 0 ¢ intAV/(T) so that it is contained in the right-half complex plane. With this
in mind, we restrict our attention in the sequel to matrices I' with I'+ '™ > 0 (or equivalently A(T') C Cy.).
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For such matrices, we next give alternate characterizations of the phase information; these will serve us well
in our derivation of stability tests in the sequel.

Given T with T4 I'* > 0, of particular interest is the smallest sector (i.e, one that subtends the smallest
angle at the origin) in the right-half plane, symmetric about the real axis, that contains N(T). (The interest
stems from the fact that in the sequel, we will consider uncertainties A whose numerical range is known to
lie in such symmetric sectors at every frequency.) Let 2®(T) be the angle subtended by this sector at the

origin. Evidently (see Fig. 3.2),
&(T) = max {MP(T') + PS(T), -(MP(T) — PS(T))} . (3.2)
We then have the following alternate characterization for ®(T').

Lemma 3.2.1 Let T € C**", with T + T* > 0. Then,

B(T) = cot~! (sup {b T4T - JE(r Iy >0v8€ {—b,b}}) . (3.3)

Proof: From Fig. 3.2 it is clear that, for b > cot(®(T)) (i.e., b # 0 and b~! < tan(®(T'))), there exists € C*

such that
Re(9*I'd) < b|Im(9" ')

i.e., for some g € {-b, b},
N Jé(r—r’“) 20.

Moreover, with b = cot(®(T)) € (=00, 00), it is clear from the figure that, for all v € C*,

Re(v*I'v) > B[Im(v*T'v)| VB € {—b,b}
ie.,

r+r* - ?—(I‘—I‘*) >0VB e {-b,b}.
Finally, if ®(T) = 0 then N(T) is a subset of the negative imaginary axis, i.e., [' = I'* > 0, and thus the
matrix inequality in (3.3) holds for every finite 8. o
Remark 3.2.3 It is easy to verify that for any T satisfying T + I'* > 0 with ®(I') > 0, we have

r+1r* - JE(l" -T*)>0 for all B € [~ cot ®(T), cot ®(T)].

Lemma 3.2.2 & is lower semicontinuous over {I' : T+ IT'* > 0}.

Proof: Let 6 € [0,7/2] and let {T;} — I', with T + I > 0 for all k, and lim sup ®(T'x) < 6. We show
that ®(I') < 6, proving the claim. If § = /2 the result is obvious. Thus suppose § € [0,7/2) and let
¢ € (0,7/2 — 6]. For k large enough, ®(T'x) < 6 + ¢, and thus, taking the cotangent of both side of (3.3)
(6 + € > 0), for k large enough,

Iy + Ty — Jé(l"k —T3) >0 VBE€[—cot(f+¢),cot(d +¢)].

It follows that
I+ - Jﬁ(f %) >0 VB e [—cot(d+e),cot(d + €],

i.e., (again using (3.3)), that cot(®(T)) > cot(d +¢), i.e., ®(I') < @ + €. Since this holds for arbitrarily small
€ > 0, the claim follows. o
With an eye towards issues of robust stability with respect to possibly block-structured uncertainty, we

now extend the definition of yg to handle block-diagonal structures. Given positive integers ki, i=1,...,¥,
such that 5 k; = n, we define the set of block-diagonal matrices with block sizes k; as
T = {diag(Ty,...,[¢) : [; € CE:xki}, (3.4)

23




We next define I'g as the following phase-constrained subset of I':
T'o = {diag(Ty,...,T¢) : [y € CF*F @(T;) < 6;}, (3.5)
where © = (61, ...,6;) with, fori =1,...,¢, 6; € [0,7/2]. Note that T+ T* >0 forall T € T'o.
Definition 2 The phase-sensitive structured singular value of M € C**™ with respect to L'g is given by
frg (M) = (inf{7(T) : T € To,det(I + TM) = 0})7"
if det(I+TM) =0 for some T € Lo, and p, (M) =0 otherwise.

Properties of p..

Unlike the “standard” mixed g, g is clearly not invariant under change of sign of its argument. Thus, in
particular, it is not always larger than the spectral radius p (complex u) or the real spectral radius pg. On
the other hand it is clear that
pu_(M) < prg (M) < p(M), (3.6)
where, for any complex matrix M,
pn_(M) = max{) : —X is a negative, real eigenvalue of M},

with py_(M) = 0 if M has no negative, real eigenvalues. This leads to the following easily derived charac-
terization of p._ . (Note that pp_ is upper semicontinuous, which justifies the “max”.

Theorem 2

M) = M) = . MT). )
Bre (M) r‘er;niﬁ‘)qpm‘( )= rer;?%i‘m”m—( ) (3.7

Like the standard mixed p, pi_ is invariant under similarity scaling of its argument by matrices that com-
mute with the elements of the uncertalnty set, i.e., given any nonsingular matrix D = diag(diI,,...,dclt,),
Pro (M) = pr, (DMD™?).

In general however, . is clearly not invariant under pre- or post-multiplication of its argument by a unitary
matrix in I'e.

Next, it is readily verified that p. (M) is monotonic nondecreasing in each of the components of © and,
using lower semicontinuity of ® (Lemma 3.2.2), that p._(M) is upper semicontinuous in (©, M). Finally,
the following result holds.

Proposition 1 Let P € Hy, be continuous over Cye, and let © € [0,7/2}¢. Then

SUP e (P(w)) = sup p (P(s)).
s€Che

Proof: We show that the following statements are equivalent:
(a) '
sup pp  (P(w)) <1,
w€ER.

(b)
(c)

(I+TP)"'€eH, VYL ele,o(l)<1,

sup pp  (P(s)) < 1.
sE(C.;.e

Since . is positive homogeneous, the claim then follows from the equivalence of (a) and (c). We first show

by contradiction that (a)=>(b). Thus let I' € T'g, with &(I') < 1, be such that (I + [P)"! ¢ Hy. Asin
the proof of Theorem 1, it follows from Cauchy’s Principle of the Argument that there exist a € (O 1] and

@ € R, such that .
det(I + aT'P(jw)) = 0.

Since af* € I'e and 7(al') < 1, this implies that Br (P(J@)) > 1, a contradiction. Concerning the implication
(b)=>(c), if there exists 3 € Cy. be such that Hrg (P(8)) 2 1, then there exists [ € I'o, with () < 1, such
that det(I 4+ ['P(3)) = 0, contradicting (b). Finally, the implication (¢)=>(a) holds trivially. O
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The small-p. theorem
Given any © : R, — [0, 7/2]¢, we define
Ao ={A €H, : A is continuous on Cye, [|Aljo < 1, A(jw) € Tow) Yw € Re}.

Theorem 3 Let P € Hyo be continuous over Cye, let © : R — [0,7/2]%. Suppose that

(a) sup,cg, Hre(u)(P(jw)) <L
Then (I + AP)™! € Hy, for all A € Ag, and if © is upper semicontinuous, then

sup ||(I4+ AP) oo < 00.
s€Ae

Moreover, if © is constant, then (a) is equivalent to
(6) (I + AP)™' € He, for all A € Ap and supsep, [I(I+ AP) Yoo < o0

Proof: The implication (a)=>(b) is proved as in Theorem 1 with det(I + AP) replacing 1+ ép. Concerning
the implication (b)=>(a), note that, if ¢ is constant and (a) does not hold, then (since P is continuous over
Cye and p_ is upper semlcontmuous) there exists, among others, a constant (complex) A € Ap and some
@ € Re such that det(I + AP(j@)) = 0, contradicting (b). (m

Remark 3.2.4 Again, the sufficiency part of Theorem 3 can be extended to handle more general uncertainty
sets. For ezample, consider the uncertainty set

={A €H : A is continuous on Cye, U(w)A(jw) € Tow), 5(Ai(jw)) < di(w),i=1,...,4, YwER},

where d; : Ry — [0,00), i = 1,...,£, © : R, — [0,7/2])%, and U(w) = diag(ui(w)lk,, ..., ue(w)l,), with
u;:Re — {z€C:|z|=1}. Then, it is easy to show that if

SUp i, (Aiag(di(@) 1)U ()" PG)) < 1,

then, (1+ AP) ' € Hy forall A € Ao; and that if, in addition, d; and © are upper semicontinuous, and
U is continuous, then
sup ||(1+ AP)™Y| < oco.
A€l

Again we will leave open the question of necessity of condition (a) of Theorem 3 under relaxed assumptions
on ©. On the other hand, even for constant ©, it is unclear in general whether, if (a) does not hold, there
exists A € Ap real on the real axis (which must be the case if A is the transfer function of a real impulse
response) such that (I +AP)~! & Hy, or ||(I + AP)7Y|| is arbitrarily large. In the case of purely diagonal
uncertainty structures, though, this is the case even with the additional requirement that A be rational. In
other words the following holds.

Theorem 4 Let P € Hy, be continuous over Cye, let © € [0,7/2)¢, and suppose k; =1,i=1,..., (=n),
i.e., suppose that T'g consists of diagonal mairices. The following statements are equivalent.

(a) SUP,¢R, »ure(P(J‘-")) <L

(b) (I + AP)~1 € Hy, for all A € Ap and suppea, [[(I+ AP) oo < 0.

(c) (I+AP) ' € Hy, for all A€ RHeo N Ap and sUPaeru. nae [|( + AP) oo < 00.

(The proof of the implication (c)=>(a) is exactly along the lines of that of the corresponding implication in
Theorem 1.)

3.3 Upper Bounds on y

So far, we have seen definitions of . _, and how conditions on p._ give sufficient (and sometimes neces-
sary) conditions for uniform robust stablllty In this section, we will concern ourselves with the numerical
computation of p.

Computing pp. exactly is equivalent to finding the global minimum of a nonconvex optimization problem,
and we are not aware of any efficient solution methods for it. Therefore, we will not attempt to compute
Peg directly; instead, we will derive numerically computable upper bounds on Prg> which will give, in turn,
sufficient conditions for robust stability.
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3.3.1 The matrix case with structure

Computing p._(m) for a scalar m is trivial. We then consider the problem of computing an upper bound
on pip (M), when M is a matrix, and I' is assumed to have some structure, that is, it is required to belong

to the set I'g. Let
{S : S ={diag(s1lk,,...,sels,) : 5s > 0},

and, given © = (61,...,60,) with 6; € [0,7/2],i=1,...,¢, let

B, Alp . B=diagbily,. ... Pely,), fi €Ri=1,....4,
© = © with 8; € [-cot 8;,cot 8;] when 6; >0 )

We then have the following lemmas.

Lemma 3.3.1 Let T € T, with I'*T" < I. Then, T satisfies, for every R, S € S, and B € Bo,

[ [salim C20° 1] 20 (38)

Proof: Consider any I’ € I'g satisfying I'*I" < I. Since I' commutes with every R € R, we have
R—-T*RT > 0. (3.9

Next, since I' € I'g, in view of Lemma 3.2.1 and of the remark following it, and since —B € Bg whenever
B € Bo, we have for every B € Bg,

'+I*—j(BT-T*B) > 0.
Since T', every S € R and every B € B commute with each other, we then have
ST'+T*S—j(BST —T*SB) > 0. (3.10)

From (3.9) and (3.10), we conclude that every ' € I'e with I'*T' < I satisfies, for every R, S € § and
B € Bo,
R—T*RT+ (I -jB)ST +I*S(I +jB) >0,

which is equivalent to (3.8). a
Theorem 5 Let T’ € T'g, with I'*I' < I. If there exists some R€ S, S € S, and B € Be, such that

M*RM - R~ (S(I+jB)M + M*(I —jB)S) <0, (3.11)
then det{I +TM) # 0.

Remark 3.3.1 Theorem 5 constitutes a special case of the general stability theorem for systems with uncer-
tainties described by integral quadratic constraints or IQCs [MR97, Theorem 1]. In particular, Theorem §
can be viewed as a sufficient condition for the well-posedness of a feedback interconnection of a constant ma-
triz with a constant phase- and norm-bounded uncertainty in the feedback loop. Since there are no dynamics
tnvolved, a direct linear algebraic proof can be given, which we present next for the sake of completeness.

Proof: Rewriting (3.11) as

[_;V[]*[S(Iij) (I:J}f)s][_?lJ<0, (3.12)

we now proceed by contradiction. Suppose that det(I + T'M) = 0. Then for some nonzero v € C*, we have
(I +TM)v =0. Defining u = Mv, we have v = —T'u. Now, from (3.12), we have

T Lsafim O[T e
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=T Lot 7] 7]

But from Lemma 3.3.1, we must have
[ " ] [ S(Iij)s (I——EB)S] [ r ] 20,
o[ Lo © ][ coe

—u |" R (I=iB)S [ v ]y,
v S(I+jB) -R v =
which is a contradiction. O

We can use Theorem 5 to derive an upper bound 4. (M) on p._(M). Suppose that for some vy > 0, R
and S in S, and some B in Bg, we have

which yields

ie.,

M*RM — v*R— (S(I +jB)M + M*(I —jB)S) < 0.

Then, it can be shown with a little algebra that v is an upper bound on p,_(M). We therefore have the
following upper bound on p,._(M).!

Corollary 1 Let M € C**". Then p. (M) < i (M), where

) . M*RM—~y2R—S(I+jB)M — M*(I —jB)S <0
ute(M)_mf{'y. v>0, R, S€8, B € Bo . (3.13)

The conclusion of Corollary 1 represents one of the central contributions of the chapter—we now have
an upper bound for Prg» which, as we shall see in §3.4, can be numerically computed quite efficiently, using
convex optimization techniques.

Remark 3.3.2 [ is easily shown that, for any scalar m, fir_(m) = pp (m).

3.3.2 An off-axis circle-criterion interpretation

As was done in [Doy85] and in §V of [FTD91] in the context of the “classical” mixed y, it is possible to
obtain the phase-sensitive p upper bound by optimizing the complex g upper bound over a set of disk
uncertainties. Consider a “block-diagonal disk uncertainty set”, i.e., a set of block diagonal matrices such
that each block ranges over a certain “hyperdisk”, namely over the image of {I'; : (I';) < 1} under a certain
linear fractional transformation. A “complex-u” type upper bound is readily obtained corresponding to such
uncertainty blocks. Clearly, if the uncertainty set covers {I' € T'g : 7(I') < 1}, then this upper bound is
also an upper bound for Ko - Below we show that minimizing this bound over a certain family of such
transformations yields precisely the bound given by Theorem 5 and Corollary 1.
Given S € § and B € Bp, let
iy [ F(I+F*F)~Y% ]
| U+FFR)"Y2 0]

where F' = S(I 4 jB). It is readily checked that the “lower” linear fractional transformation Fi(T,—M) is
well defined for any M, that the “upper” linear fractional transformation F,,(7T',T) is well defined whenever

&(T') <1, and that (provided o(T) < 1)
F(T,-M) = (F - M)(I + F*F)~/2,

Fy(T,T) = ((I + F*F)Y?2 —TF)~'T.
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Figure 3.3: Three “equivalent” block diagrams.

Consequently, the systems in the three block diagrams of Fig. 3.3 are all equivalent in the sense that each
one is well-posed if and only if the other two are.

For the sake of geometric intuition consider now the case of a diagonal (rather than block diagonal)
structure, say, F' = diag(f;), with f; = s;(1 +jB;), s; > 0 and |B;| < cot §; when 6; > 0. Let BT be the set
of complex diagonal matrices I' with &(I') < 1. The image of BI' under the linear fractional transformation

Fu(T, ") is given by
-1
Rt BT) = {diog (7 VIFTRE - 5) ) sl 1}

It is straightforward to check that each diagonal entry ranges over a circle of radius VI+HILP= V14820 +87)
centered at f; = s;(1—]B;) (see Fig. 3.4). It follows that, for each s; > 0 and each §; with |§;| < cot 6; when
0,’ > 0,

{T € Te : 7(T") < 1} C F,(T,BT), (3.14)

which shows that each diagonal “disk” entry of F,,(T, BI') “covers” the corresponding entry in the uncertainty
set of interest, {I' € T'e : &(T') < 1}. Conversely, it is easy to show that any disk that covers a diagonal
entry in the uncertainty set {I' € I'e : 7(T') < 1} must be the corresponding diagonal entry of Fy, (7', BT') for
some T it is easy to solve “backwards” for s; and f;, given the center and radius of the disk.

The same inclusion (3.14) holds in the general (block diagonal) case. Indeed

1[0 (I + F*F)/?
=|; e :

and simple algebra shows that, for any ' with &(I') < 1, F;(T~1,T) is well defined and
F (T, R(T™"T)) =T,
and thus it is enough to show that
F(T~ ' {T €T :5(T') < 1}) C BI.

To see that the latter inclusion holds, assume without loss of generality that £ = 1 (full matrix uncertainty),
ie., F=fI with f =s(1+jB),s>0, |8 <cotf when § > 0, and let ' € I'e with 7(I') < 1. It remains to
show that

F(F(T™,T) < 1,

or, equivalently, _
I—(1+|fP)(I + fT*)~'T°D(I + /1)~ 2 0,

i.e., via a congruence transformation,
(I+ JT*)(I + fT) = (1 + | fI")I"T > 0,

1 This result was first reported, in a slightly different form, in [LTF89]. For the case when §; = n/2, 1 = 1,...,£ (passive
uncertainty), it is a special case of a result obtained independently by Eszter and Hollot [EH97].
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le.
(I —T*T)+ (fT + fT*) > 0.

Since this clearly holds for any T € T'e with &(T') < 1, (3.14) holds in the general case as claimed.

A sufficient condition for
det(I+TM)#0 VI eTle, a(l') <1,

ie., for p. (M) <1, is thus that

det(I+TM)#0 VI € Fu(T,BT).
Since the second and third block diagrams in Fig. 3.3 are equivalent, the latter holds if and only if

det(I — Fi(T,—-M)I') #0 VI € BT,
Le.,

p(F(T,—M)) < 1,
and a sufficient condition for this is that, for some R € S,
7(RF(T,-M)R™') < 1. (3.15)
Since S and B commute, letting Mp = RM R™1, we get
RF(T,-M)R™' = (F — Mg)(I + F*F)~'/%.
It follows that (3.15) holds if, and only if
((F — Mp)(I + F*F)~\2)*((F — Mg)(I + F*F)~'/?) < 1,

i.e., if, and only if,
(F* — M{)(F — Mg) < I+ F*F,

which holds if, and only if,
MjiMp—1— F*Mp — MgF <0,

which is equivalent to the condition given in Theorem 5.

3.3.3 Some special cases

It is instructive to study the application of Theorem 5 and Corollary 1 to some special cases for the set I'e.
These cases are encountered more often in practice; also, for some of these special cases, we can relate our
results to those from literature.

Bounded passive uncertainty

We consider first the case when the I'g consists of unstructured or full matrices (i.e., £ = 1) with a known
bound on their maximum singular value, and whose phase is known to be 7/2 or less. This situation arises
when the uncertainty A is passive and bounded. If A were scalar (i.e., k1 = 1), this would mean that the
Nyquist plot of A is in a semicircle of known radius that lies in the right-half complex plane, shown in in
Fig. 5(a).

In this case, Be = {0} and S consists of positive multiples of the identity matrix. Therefore, from
Corollary 1, we have

N . CrM*M =yl —s(M+M*) <0
“fe(M)““f{7' y>0,7r>0,5>0 ’

which further simplifies to
fro g (M) = (max {0, inf {Amax (M*M —c(M + M) : ¢> 02,

where Amax denotes the largest eigenvalue of the corresponding Hermitian matrix.
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(1): B = —cot(d:) (1):(2): B = —cot(8)

(2): —cot(8:) < f: <0 (4),(5): Bi = cot(6;)
(3): Bi=0 ) (1),(5): si=1

(4): 0 < i < cot(f;) (2),(4): 0<si <1
(5)2 B: = cot(6;) (3): =0

Figure 3.4: Covering the uncertainty with off-axis circles. The figure on the left shows the covering of the
ith diagonal phase-bounded uncertainty with disk-uncertainties obtained by loop transforming the unit-disk
with f; = (1+4j8:) for various values of §;. The figure on the right shows the covering with disk-uncertainties
obtained by loop transforming the unit-disk with f; = s;(1 £ j cot ;) for various values of s;.

Bounded, constant, Hermitian, positive-definite uncertainty

We next consider the case when A is a constant, Hermitian, positive-definite matrix, with a known bound on
its maximum singular value. If the uncertainty were scalar (i.e., k; = 1), this would mean that the Nyquist
plot of the uncertainty is simply a point in a sub-interval of the positive real axis, as shown in Fig. 5(b).

In this case the set Be consists of arbitrary real multiples of the identity, while S consists of positive
multiples of the identity. Therefore, we have,

N . CrM*M —y?rI — s(1+jb)M — M*(1-jb)s < 0
”FG(M)_lnf{7' v>0,r>0, 5>0, bER ’

which further simplifies to
iy (M) = (max {0, inf {Amax (M*M = (c+jd)M — M*(c—jd)) : ¢>0, d € R}})/2.

It is instructive to consider other special cases of the instances considered above, when the uncertainty
is diagonal, so that ky = --- =k, = 1.

Diagonal bounded passive uncertainty

Suppose that the Nyquist plot of each of the diagonal uncertainties is known to lie a half-disk such as the
one shown in Fig. 5(a). In other words the uncertainty is diagonal, passive and bounded. In this case, the
set Bo = {0} and the set S consists of diagonal positive-definite matrices. Here

R . . M*RM —y*R—-SM — M*S <0
llre(M)—lnf{7' v>0, R, S>0and diagonal }
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(a) Bounded passive uncertainty: (b) Positive, real uncertainty: The
The Nyquist plot is known to lie in the Nyquist plot is known to lie in a sub-
shaded region. interval of the positive real axis.

Figure 3.5: Various special cases

Diagonal, bounded, positive, constant real uncertainty

Finally, we consider the case when each of the diagonal uncertainties is a constant unknown parameter,
known only to lie in some sub-interval of the positive real axis such as the one shown in Fig. 5(b). Such
uncertainties are often called parametric uncertainties. Here, the set Bg consists of arbitrary real diagonal
matrices, while S consists of diagonal positive-definite matrices. Thus,

M*RM —¥?R— S(I+jB)M — M*(I —jB)S < 0 }

Fre (M) = inf {7 : v>0, R, S, B real and diagonal, R> 0,5 >0 (3.16)

Remark 3.3.3 This case of bounded diagonal real uncertainty is well-studied in the literature, usually under
the name of “real-p” analysis; see for ezample, [FTDY1, Bal95]. The problem considered in these references
is the computation of pgr(M), which is defined as

-1
A inf ¢ 5(I') : T is diagonal and real, if det(I + TM) = 0 for some
ne(M) = det(I+TM)=0 diagonal and real T,

0 otherwise

We point out that pg(M) is different from p. (M) with © =0 (for ease of reference, we will call the
latter quantity pg, and its upper bound given in (3.16) by g, ). The difference between pg and pg, s that
with pg,, the uncertainty is required to be nonnegative, unlike with the definition of pg. For this reason, we
will refer to pg as “two-sided real-p”, while we will call g, “one-sided real-p”.

The upper bound for the two-sided real-p from [FTDY1] and [Bal95] can be easily adapted via a loop
transformation to yield an upper bound for the one-sided real-u. This upper bound on pg, is just

—92yS — S(I +jB)M — M*(I —jB)S < 0 }

Fim (M) = mf{‘y : ¥ >0, S, B diagonal, S >0 (3.17)

Remarkably, computing fig, using (8.17) has the same complezity as computing fig , using (8.16). Extensive
numerical simulations suggest that this upper bound is tighter than the bound (8.16). We should note however
that the bound (3.17) does not extend to the case of general phase-bounded uncertainty considered in this

chapter.
Finally, we note that it is possible to adapt g, the upper bound for the one-sided real p, to yield an
upper bound for the two-sided real . This upper bound on pg turns out to be

nfd M*(BR+2)M —y*R+v((S—R+jB)M - M*(2S—-R— jB))< 0
T v >0, 5, B diagonal, S >0 :

However, we know of no efficient way of computing this upper bound.
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3.4 Computing sup, ﬂre(w)(P(jw))

From Theorem 3 in §3.2.2, it should be clear that the computation of SUPyeR, Fro (P(jw)), which we shall
denote by Me(P), is of considerable interest. For reasons pointed out at the beginning of §3.3, we will
consider instead the problem of computing sup, '&Fe( )(P(jw)), which we shall denote by Me(P). Since
Meo(P) > Me(P), computing Me(P) will enable us to state sufficient conditions for the stability of the

system in Fig. 3.1.
For each frequency w, the quantity ﬂl‘e(u) (P(jw)), defined in Corollary 1, can be computed as the solution

to a quasi-convex optimization problem. There are several ways of showing this; we will demonstrate one

method. For convenience, we let M = P(jw).
Recall that /i, is given by (3.13). Let T'= BS. Then the condition on B is equivalent to

AS>T > —AS,
where A is a constant diagonal matrix given by
A = diag(cot (61 (w)) Ix,, ---,cot(fe(w)) Ix,).
Thus f,. is given as the optimal value of v obtained by solving the problem

minimize 2
subject to y2R > M*RM — (SM + M*S) —j(TM — M*T)
AS >T > —AS,
R =diag(rilg,,...,red,), m>0 (3.18)
S = diag(s1lk,,..-,5k,), $>0

T= diag(tllkl, .. .,teIkt)

With v 2 72, the optimization variables in this problem are v, R, S and T. Problem (3.18) is one of
minimizing a linear objective v, subject to constraints on v, R, S and T that are convex (in fact, linear
matrix inequalities?) in R, S and T for fixed v, and vice versa. It can be shown that problem (3.18) is a quasi-
convex optimization problem [BEFB94]. Much work has been done lately on problems such as (3.18): it is
well-known that such problems have polynomial worst-case complexity; moreover, very efficient algorithms
and software tools are available for their solution [GN95, GDN95].

Next, we have the following obvious lower bound on Mg (P).

Lemma 3.4.1 Let Q = {wo,w1,...,wn} be a set of frequencies. Then, M%’(P, Q), defined as
~ A . .
ME(P,Q) & max{f.,  (P(wi))},

satisfies MS(P,Q) < Mo (P), i.e., il is a lower bound on Mg (P).

In order to compute /\;(IGI,’(P, ), we need to solve N + 1 quasi-convex optimization problems of the
form (3.18). Of course, the number and choice of frequencies comprising €2 determines how tight a bound
ME(P,Q) is.

Remark 3.4.1 The lower bound given by Lemma 3.4.1 suffers from a possible shortcoming: It is known
that in general, ﬂre(w)(P(jw)) may be discontinuous as a function of w. Specifically, ﬁl‘e(u) (P(w)) maght
only be upper semicontinuous, and therefore we have no guarantees with the convergence of the lower bound
M%)(P, Q) to M@(P) even if N, the number of elements of Q, tends to co (but a scheme analogous to that
proposed in [LTD96] might be applicable). However, in most engineering applications (as we will see in §3.5),
this does not pose a serious problem.

2A linear matrix inequality or an LMI is a matrix inequality of the form F(z) = Fp + Z:’;l z;F; > 0 or F(z) > 0, where
F,; are given Hermitian matrices, and the z,s are the real optimization variables.
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It is also possible to compute upper bounds on M@(P) using state-space methods. The basic idea is this.
Meo(P) < 7 if and only if there ezist R : JR — R™*", § : jR — R**" and T : jR — R™*" such that for
every w € Re, the following constraints are satisfied (the dependence of A on w is now made ezplicit).

(i)  7Y?R(jw) > P(jw)* R(jw)P(jw) — (S(w)P(jw) + P(jw)*S(jw))—
(T (w)P(jw) — P(jw)*T(jw)),
(i) AW)S(Gw) > T(jw),
(i) T(w) > —A(w)S(w), (3.19)
(iv) R(jw) = diag(r1(jw)Ix,, . .., re(iw)lx,), ri(jw) >0
(v)  S(w) = diag(s1(Gw)Ix,, . . ., s¢(w)lx,), si(jw) >0
(vi) T(jw) = diag(t1(w)lr,, - - -, te(jw)k,)

It can be shown [CTBY7b] that the constraints in (3.19) hold for some v if and only if they hold for
some real-rational transfer functions R, 5 and T. This fact can be combined with the Positive-Real (PR)
lemma [Wil71, AV73] to write down LMIs whose feasibility is equivalent to conditions (i)-(v) (see for ezam-
ple, [Bal95, CTBIT] for an illustration of this procedure). Thus, a sufficient condition for the feasibility of
problem (3.19) can be recast as an LMI feasibility problem. A bisection scheme can then be used to compute

an upper bound for M@(P). It is also possible to avoid the bisection scheme altogether, by recasting the
upper bound computation problem as a single generalized eigenvalue minimization problem; see [BW].

3.5 Numerical examples

We demonstrate on a few examples the application of stability tests based on the PS-SSV.

3.5.1 Example 1: Stability of a flexible structure

We consider the stability of a planar truss structure, with a model adapted from the one presented in [1091].
The truss structure has sixteen free nodes, each with two degrees of freedom; thus it exhibits thirty-two
flexible modes. We assume that the first mode is exactly modeled as a linear time-invariant system, with

transfer function p given by
0.39272%s?

P(8) = Z32(0.0075)(131)s + 1312
The remaining modes are modeled as a linear time-invariant uncertainty, with transfer function denoted by
8(s). It is known that 8 is stable, and satisfies

[6(jw)] < 0.3370, Reé(jw) >0, for allw € R, (3.20)

that is, 8 is passive, and has an Hy, norm bound of 0.3370. A linear time-invariant controller ¢ with transfer

function
_ 9.3855 4+ 33.185% + 40842.00s% + 489341.01s% + 203926.51s + 489289.16

©(8) = — 5 15.15+% 7 10027.815% + 1631033657 + 587196.795 + 434993.70

has been designed to stabilize p(s), placing the poles at —1, —4 and —10. The robust stability question then
is whether the controller stabilizes p + 6.

The block diagram of the system is shown in Fig. 6(a). The system redrawn in our analysis framework
is shown in Fig. 6(b), where g = ¢/(1 + pc). The magnitude and real part of g are shown in Fig. 3.7.

From an inspection of these plots, and the properties of é given in (3.20), we conclude that:

o The small gain theorem does not prove stability of the system in Fig. 6(b), since the Hoo norm of g
exceeds 1/0.3370.

e The passivity theorem does not prove stability of the system in Fig. 6(b), since g is not strictly passive
(the real part of g(jw) is nonpositive for some w).
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> 5(8) ‘
I
> g(s) |
c(s) »  p(s) — -14
8(s) ¢
(a) Block diagram of the flexible truss structure. (b) Block diagram redrawn in

our framework.

Figure 3.6: Example 1: Models of the flexible truss structure.

19(iw)I
Re g(jw)

10' 10° 10 10’ 10° 10 10

107 10 10 10 10
w (rad/sec) w (rad/sec)
(a) Magnitude of g. (b) Real part of g.

Figure 3.7: Example 1. Frequency response of g.

However, the analysis techniques presented in this chapter do prove uniform robust stability. A plot of
Hro(9(jw)) is shown in Fig. 3.8. (Since g is a scalar transfer function, g is trivial to compute.) Since
SUP,eR, Kro (9(0w)) < 1/0.3370, the system in Fig. 6(b) is indeed uniformly robustly stable.

3.5.2 Example 2: Analysis of parametric systems

We next consider the problem of uniform robust stability of the closed-loop system shown in Fig. 9(a). P is
the parameter-dependent plant, with transfer function given by

a;(s + b))

Ti2e4l & €[0,1], b; € [1,2], ¢; €[1,2],

P(s) = diag(pi(s),p2(s)), pi(s) =

and C is the controller with the transfer function

s24s—1 s+1
(s+1)(s+2) s+2

1 s+1
s+ 10

C(s)=0.3

The problem now is to ascertain the stability of this system for all allowable values of the parameters.
Fig. 3.10 shows the values of the frequency response of p;, over a number of allowable parameter values,
at a sample list of frequencies. This figure indicates that each p; is passive, and has a frequency response
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Brg (9(iw))

w (rad/sec)

Figure 3.8: Example 1: The PS-SSV of g(jw) versus w.

> C(s)
C(s) > P(s) > -1
P(s) ¢
(a) Block diagram of the parameter-dependent system. (b) Block diagram redrawn in

our framework.

Figure 3.9: Example 2: Stability analysis of a parameter-dependent system.

which can be described as satisfying certain magnitude and phase constraints. Fig. 3.11 shows the magnitude
and phase constraints on each of the terms.
This problem can be posed in our PS-SSV framework, as shown in Fig. 9(b). The uniform robust stability

condition is

sup T(P(jw))tieq, (ei¢<w>0(jw)) <1, (3.21)
wER,

where 1(w) and the entries of ©(w) are plotted against w in Figs. 11(b) and 11(c), respectively. For conve-
nience we let C(jw) = éi¥(“)C(jw). A plot of Pro, (C(jw)) is shown in Fig. 3.12, in solid lines. For reference,

the optimally scaled maximum singular value of C’(jw) is shown in dotted lines; this is an upper bound on
p(C(w)), which can be thought of as an upper bound on PS-SSV that does not use the phase information.
Since condition (3.21) holds, the system in Fig. 9(b) is indeed uniformly robustly stable. Note that, since
7(P(j0)) = 2, the bound on PS-SSV that does not use the phase information does not yield this conclusion.

Remark 3.5.1 There is a more direct method of analyzing parameter-dependent systems, namely “real-p”
analysis (see [FTDY1]). It is of interest to compare PS-SSV-based stability methods with real-p methods.
Let us consider the question of whether the system in Fig. 9(b) is uniformly robustly stable. The answer

is affirmative in the PS-SSV framework ifsupweRQE(P(jw))ﬁre(w) (é’(Jw)) is less than one. Checking this

numerically, from the discussion in §3.4 (in particular, Lemma 3.{.1), requires the solution of N LMI
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w = 0.01 rad/sec w = 0.05 rad/sec w = 0.1 rad/sec w = 0.2 rad/sec
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-2 0 2 -2 0 2 -2 0 2 2 0 2
w = 0.5 rad/sec w = 1 rad/sec w = 2 rad/sec w = 5 rad/sec
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Figure 3.10: Example 2: Frequency response of each p; at a number of frequencies.

feasibility problems, one for each frequency. Let us consider one such feasibility problem. The variables in
this problem are diagonal 2 x 2 matrices R, S and T Thus, the number of scalar variables is 6. There is
one LMI constraint of size 2 x 2, and 6 scalar constraints.

When the uniform robust robust stability of the same system is posed in the real-p framework of [FTDI1],
we once again have to solve an LMI feasibility problem at each frequency. Here the variables in each problem
are diagonal 6 x 6 matrices D = DT and G = G (see [FTD91] for details); thus the number of scalar
optimization variables is 12. There is one LMI constraint of size 6 x 6, and 6 scalar constraints.

For the problem of uniform robust stability with parametric uncertainties, PS-SSV-based tests are likely
to be more conservative than real-u tests. However, it should be clear from the number of variables and
constraints that the amount of computation required by PS-SSV-based methods is less than that required by
real-p methods. For our example, empirical studies indicate that the computation required by real-u methods
is approzimately 12 times that required by PS-SSV-based methods [VB95]2 Thus, the PS-SSV approach
can be useful in analyzing parameter-dependent systems, albeit more conservatively, when the number of
parameters is large.

3.5.3 Example 3: Experimentally measured matrix phase information

We consider an uncertain system as in Fig. 3.1, where the plant P is strictly proper (i.e, P(00) = 0), has
two inputs, two outputs, and a state-space realization (A, B, C) with

-1 0 1 ~1 -1
A= 0o -1 1|, B=|-1 1], C:H’i g _;]
0 -2 -3 i1

We assume that the two-input two-output LTI uncertainty A has been experimentally measured at a
number of frequencies. A scatter-plot of the phase information of A(jw) at a number of frequencies is shown
in Fig. 13(a); a scatter-plot of the norm of A(jw) at a number of frequencies is shown in Fig. 13(b).

3In general, for an LMI problem with k variables and L LMI constraints of size n; X n;, the computation required is dominated

by O (K i, mi(ni +1)/2).
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Figure 3.11: Example 2: Magnitude and phase constraints on pi(jw).

From the scatter plot shown in Fig. 13(a), we can determine continuous functions ¢y, and ¢y, such that
for every frequency w and A, the smallest sector containing N(A(w)) is

{z : 2= red¥, r>0,¢v€ [B1b(w), pub(w)]} -

(These functions are shown in solid lines in Fig. 13(a).) Also, from Fig. 13(b), we can determine a function
d(w) such that for every frequency w and A,

7(A(jw)) < d(w)-

(This function is shown in a solid line in Fig. 13(b).)
Then, defining 8(w) = 0.5(¢ub(w) — d(w)) and P(w) = 0.5(¢ub(w) + ¢ib(w)), we have that the system
in Fig. 3.1 is uniformly robustly stable if

Sup e, (¢¥P(w)) dw) <1,
weR,
where in the notation of §3.2.2, k; = 2, and © = (6). The upper bound ﬂre(u)(P(jw)ej‘z’(“’)) from (3.13)

is obtained for various w by solving the optimization problem (3.18), and plotted in Fig. 3.14. Since

SqueRe[‘re(u) (e¥®) P(jw))d(w) < 1, the system in Fig. 3.1 is indeed uniformly robustly stable.

3.6 Conclusions

The “phase-sensitive structured singular value” framework developed in this chapter provides an effective
robustness analysis tool in various situations, e.g., in the case when the uncertainty, besides being (possibly

block-structured and) small, is known to be passive.
Several issues have been left unresolved.

1. Under what “minimal” assumptions on 8() are statements (a), (b) and (c) of Theorem 1 equivalent?
2. In the presence of non-scalar “full blocks”, and with © constant, are statements (a) and (b) in Theo-
rem 3 equivalent to the analogue of statement (c) in Theorem 1, namely
(c) (I +AP)! € Hy, for all A € RHe N A and supsermbna (1 + AP) oo < 00.

3. When is the upper bound f defined in Corollary 1 of §3.3 equal to p._, in particular is it always
equal to g, when £ =1 (full block uncertainty)?

The answer to some of these questions may be within reach.
The contributions in the chapter can be generally viewed as the following: When the uncertainty A in

Fig. 3.1 is LTI, and when additional information on the phase of the frequency response of A is available,
we have derived sufficient (and sometimes necessary) conditions for robust stability. A natural extension of
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Figure 3.12: Example 2: The upper bound on o, (C~’(_]w)) is plotted against w in solid lines. The

optimally scaled maximum singular value of C‘(jw) is plotted against w in dotted lines.

this problem considered in this chapter is the following. Consider for simplicity the case when A is a scalar
uncertainty, and suppose that it is known that the Nyquist plot of A is restricted to lie in some region in
the complex plane that can be described as the intersection of generalized disks (i.e., disks and half-spaces).
Then, we can derive a sufficient robust stability condition by combining robust stability conditions for each
generalized disk, just as we did to arrive at Theorem 5. As a further extension along these lines, consider
the situation when the Nyquist plot of A is restricted to lie in some region in the complex plane that can
be described as the union of sets which are themselves obtained as an intersection of generalized disks. (A
classic example of such a region is the “butterfly” uncertainty set, described in [LT92a].) The techniques
described in this chapter can be extended to handle these more general cases as well.

The focus of this chapter has been exclusively on uncertainties about which phase information is available.
The techniques herein can be combined with other standard robustness analysis techniques such as complex
or real-y analysis, when phase information about only certain blocks of the uncertainty is available, leading to
a new “mixed-p” paradigm. Finally, while the theory was developed for the continuous-time case, extension
to discrete time is straightforward.

Appendix A

Proposition 2 Let 6 € (0,7], let & € R\ {0}, and let v € Ty be such that |y| < 1 and |¢(7)| < 8. There
exists 6 € RH,,, continuous on Cye, such that §(jo) = v and such that ||6]|cc < 1 and sup, g |#(6((iw)))] <
0.

Proof: If ¥ = 0, simply let § map C; to zero. Assume now v # 0. Let D = {z € C:|2| < 1} and let
D = {z€D:Rez>0,|¢(z)] < f}. We first construct a non-rational mapping § : D — C, taking real
values on the real axis, such that é( 'D) belongs to D¢ and contains v and 1/2 + jO in its interior. This map

is selected from a one-parameter family of mappings #:D—C A€ (0,1), constructed as the composition

~ ~ X
of two maps, 1.e., R ._62 061.

First, for A € (0, 1), the map 5~1)\, defined on D, is given by

1+ Xz — (1 =2 zcos 9 + (Az)?)1/2 A

L+ Az + (1= 2hzcosy + (Az)2)172’ with sin (¢/2) = T

§z) = —
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(a) Scatter plot of the MP(A(jw)) 4+ PS(A(jw)) (de- (b) Scatter plot of the norm of A(jw) (for various A)
noted by “+") and MP(A (jw)) — PS(A(jw)) (denoted versus w.

by “."), for various A, versus w.

Figure 3.13: Example 3: Experimentally determined magnitude and phase characteristics of A.

For fixed A, 6~1)‘ maps D to the interior of a set such as the one depicted in Fig. 15(a).
Next 6~2'\, defined on &A(—D-), is given by

6" (w) = (w+(1- )"/

(In the definition of 6~1'\ and 5~2'\, given ¢ = pel?, with p > 0, and ¢ € (—m, 7], and given p € (0,1], we set
(P = pPelP?. In other words, the “cut” is taken along the negative real axis.) It is readily checked that, for
every A € (0,1), 8 takes real values on the real axis. For fixed A € (0,1), 6*(D) is as depicted in Fig. 15(b)
(it belongs to D?).

As XA — 1, the boundary of 5’\(5) uniformly approaches that of D?. As the next step, we select § =68
where A* € (0,1) is such that both 7 and 1/2 + jO belong to the interior of 6" (D). We next define basa
truncated Taylor series of 6 about 1 /2 + j0, with the properties that 5(5)belongs to DY, and that 7 belongs
to §(D). The existence of such 8 is a direct consequence of the uniform convergence of the Taylor series.
Since & is real on the real axis, 4 is a polynomial with real coefficients. Further, a real-rational mapping )
is defined as the composition of the mapping s — (s — 1)/(s + 1), which maps C; to D, with ¢, where
& €(0,1) is such that v belongs to the boundary of ES('D). It is readily checked that the image under § of the
imaginary axis is this boundary. Also, since 6(C,) belongs to D?, it obviously is bounded in the right half
plane. Finally, we let 6(s) = 5(%3), where @ € RU {00} is such that §(j©) = v. (In particular, if & € {0,00},
4 is real (since § is real rational) and 6(s) = 7 for all 5.) Clearly, é has all the claimed properties. a

Acknowledgement. The authors wish to thank Dr. Carlos Berenstein for his helpful suggestions in
connection with Proposition 2, and Dr. Pramod Khargonekar for pointing out the non-obviousness of the
necessity part of the small-y theorem in the present context.
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Figure 3.14: Example 3: Upper bound on Prow, (e"¥() P(jw)) as a function of w.
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(b) For A = 0.9 and § = /4, the boundary of the set
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(2) The set 6.1)\('1)), for A = 0.9.

Figure 3.15: An illustration of the mappings 6~1A(<) and 62(-).
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Chapter 4

Efficient Computation of a
Guaranteed Lower Bound on the
Robust Stability Margin

Sufficient conditions for the robust stability of a class of uncertain systems, with several different as-
sumptions on the structure and nature of the uncertainties, can be derived in a unified manner in the
framework of integral quadratic constraints. These sufficient conditions, in turn, can be used to derive
lower bounds on the robust stability margin for such systems. The lower bound is typically computed
with a bisection scheme, with each iteration requiring the solution of a linear matrix inequality feasibil-
ity problem. We show how this bisection can be avoided altogether by reformulating the lower bound
computation problem as a single generalized eigenvalue minimization problem, which can be solved very
efficiently using standard algorithms. We illustrate this with several important, commonly-encountered
special cases: Diagonal, nonlinear uncertainties; diagonal, memoryless, time-invariant sector-bounded
(“Popov”) uncertainties; structured dynamic uncertainties; and structured parametric uncertainties. We
also present a numerical example that demonstrates the computational savings that can be obtained with
our approach.

4.1 Introduction

We revisit the interconnection of a linear system with transfer function H(s) and an uncertainty or pertur-
bation A, shown in Fig. 4.1, and described by

z=Ax+Bw, z=Cz+Dw, w=e+7p, p=A4A¢, q¢=f+z2, (4.1)

where z(t) € R®, w(t) € R™, z(t) € R":, A, B, C and D are real matrices of appropriate sizes, and
A : L2:[0,00) — L3*[0,00). We assume that all the eigenvalues of A have negative real parts. We also
assume that n, = n, = m; the results herein can be extended with little difficulty to cover the more general

cases. Finally, we assume that system (4.1) is well-posed.

H(s) £

\
\ 4

Figure 4.1: A standard framework for robustness analysis

0 Joint work with Fan Wang, Ph.D., School of Electrical and Computer Engineering, Purdue University.
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The framework that we use in this chapter for modeling the uncertainty is based on the notion of Integral
Quadratic Constraints or IQCs; see [MR97] and the references therein. Borrowing notation and terminology
from [MR97), two signals p € LZ*[0, 00) and ¢ € LF*[0, 00), with Fourier Transforms p and § respectively, are
said to “satisfy the IQC defined by IT”, if

/oo [ (i) ]*H(jw) [ §(jw) ] dw >0,

oo L B3w) B(jw)

where II : jR — C?™%2™ s a measurable Hermitian function, bounded on the imaginary axis. We also say
that A : LT[0, 00) — LT[0, 00) “satisfies the IQC defined by II”, if for every ¢ € L*[0,00), ¢ and Ag satisfy
the IQC defined by II.

With the above terminology, we assume that A lies in the set

A = {A | For every II € II, any TA satisfies the IQC defined by II, where 7 € [0,1]}, (4.2)

where IT is some specified set. (We will consider a number of special cases for IT in the sequel.) The set I can
be thought of as summarizing all the information known about A. We will make the following assumption
My I

, we assume that:
Iy, M3 ]

about II: Partitioning any Il € IT as II = [

For some € > 0, for all w € R, II11(jw) > 2¢ and II3(jw) < —2e. (4.3)

We shall see in §4.3 that for a number of commonly encountered uncertainty descriptions, the set IT
defining the corresponding IQCs satisfies this assumption; thus it is not very restrictive.

Given some ¥ > 0, we say that system (4.1) is robustly stable if it is La-stable (see [DV75]) for every
A € A. The quantity of interest, in this chapter, is the robust stability margin vy of system (4.1), which
is defined as the largest 4 such that system (4.1) is robustly stable. The quantity 7y, is very useful in
practice, as it has the interpretation of the largest uncertainty size for which the H-A interconnection is
robustly stable. It is well-known that computing vm exactly is an NP-hard problem in several important
and commonly-encountered situations [BYDM94]. (Roughly speaking, this means that the computational
effort required to compute vy, to within a given accuracy grows more than polynomially with the problem
size.) Therefore, we will be content with computing lower bounds on yp,.

For fixed 7, a number of sufficient conditions for the robust stability of system (4.1) exist, depending on
A. When A can be any operator satisfying an Ly-gain bound, the small-gain theorem provides a necessary
and sufficient condition for robust stability. When A is structured—say diagonal-—the small gain condition is
no longer necessary for stability; diagonal scalings can then be used to derive less conservative robust stability
conditions [Doy82, Saf82]. In addition, if A is a memoryless time-invariant sector-bounded nonlinearity, the
celebrated Popov criterion yields a sufficient condition for robust stability (see for example, [DV75]). When
A is LTI or parametric, the well-known g analysis and K,,, analysis methods provide sufficient conditions for
robust stability [BDG*91, CS92, FTD91]. It has been noted recently that several of these stability criteria
can be unified in the setting of stability analysis using IQCs [MR97]. These stability criteria can be used
to define a guaranteed lower bound on v, (as the largest v for which robust stability can be proved using
the IQC framework). The computation of the lower bound on vy, thus defined requires bisection schemes,
with each iteration requiring the solution of a convex feasibility problem, typically a linear matrix inequality
(LMI) feasibility problem [396, SC93, HH93b, LSC94, Bal95, Hel95].

The main contribution of this chapter is to show how bisection car be avoided altogether, by reformulating
the lower bound computation problem as a single generalized eigenvalue minimization problem (GEVP)L.
This is a quasiconvex optimization problem over LMIs, and can be solved very efficiently using standard
algorithms and software (see, for example, [BEFB94, BE93] and [GN95]). We also present examples that
illustrate the computational improvement obtained with our approach.

The organization of the chapter is as follows. In §4.2, we very briefly review the robust stability analysis
of system (4.1) using the IQC framework. We then show how to recast the robust stability margin lower
bound computation problem as a GEVP. In §4.3, we illustrate our approach on several important commonly-
encountered special cases for the set of uncertainties A. In §4.4, we compare the computational effort of the
GEVP and bisection schemes with a simple numerical example.

1 A similar reduction of the stability margin calculation to a GEVP was also made in [J86], however with severe restrictions

on the system matrices.
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4.2 Robust stability margin bound via generalized eigenvalue min-
imization ‘

We review a robust stability criterion, taken from [MR97], for systems with uncertainties described by IQCs.

(For all the uncertainties considered here, this stability criterion can be derived via an application of the

passivity theorem with multipliers, see for example, [DV75, HH93b, SC93, Bal95].)

Given some 7 > 0, a sufficient condition for the stability of system (4.1) for all A € A is given by the
following lemma [MR97, Theorem 1].

Lemma 4.2.1 Suppose that the interconnection of H(jw) and A in Fig. 4.1 is well-posed for any 7 € [0,7]
and any A € A. Then, if there exist Il € II and € > 0 such that

[ 7H gjw) ] (jw) [ vH E_f‘”) ] < ~%I, foralweR, (4.4)

system (4.1) is robustly stable for all A € A.

The above sufficient condition for the robust stability of system (4.1) yields a lower bound for the robust
stability margin via the following optimization problem:

Maximize:
(4.5)
Subject to: There exist II € IT and € > 0 such that (4.4) holds.

We now describe the current, commonly used technique for the numerical solution of Problem (4.5) (see
for example [J96]). In general, II—the set defining the IQCs corresponding to A—is not described by a
finite number of variables. In order to reduce the number of optimization variables to a finite number, a
subset of II is defined as

( H( .w) — [ W(jw)*RnW(jw) W(jw)*ngW(jw) } )
7 W(jw)* REW(jw) —W(jw)* RpaW (jw) |’
Mo = {1 | W(iw) = [ Cw (I Bv’;‘W)'IBW ] , [ ﬁi _Ré; ] cq, ¥, (4.6)

for some ¢ > 0, for allw € R,
W(jw)* R11W (jw) > 2¢eI, W(jw)*RooaW (jw) > 2¢I |

\

where Aw € R"WXnw By € R"WX™ Oy € REX"w Dy € RY*™, and Q is an appropriately chosen
subspace of RAK+L)x2K+L)  (We will see specific examples in §4.3.)

Remark 4.2.1 It is typically computationally more efficient to parameterize the various blocks I;; of I
in (4.6) as ;;(jw) = Wi(jw)* Ri;W;(jw), where W; and W; are different transfer functions. However, for
simplicity of presentation, we will continue with the definition of g, as in (4.6), noting that the development
herein can be readily extended to the more general case.

With II restricted to lie in ITg,, we have another lower bound on the robust stability margin via the following
finite-dimensional optimization problem:

Maximize: <«
4.7

Subject to: There exist Il € Ilg, and € > 0 such that (4.4) holds.

For a fixed 7, checking if there exists IT € IIg, such that condition (4.4) holds can be reformulated as a convex
feasibility problem with LMI constraints (see Lemma 4.2.3 below). Current techniques take advantage of
this observation to solve Problem (4.7) using a bisection scheme; see [J§6, Bal95, SC93, Hel95).

There are a number of problems associated with using the bisection scheme to solve Problem (4.7). First,
upper and lower bounds on the optimal value yop¢ need to be determined to initialize the bisection; such
bounds may be known a priori or may have to be determined. The quality of these bounds will of course
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affect the efficiency of the bisection scheme in computing y.p¢. Moreover, the bisection scheme does not take
. advantage of the fact that Problem (4.7) is a quasiconvex optimization problem (see for example, [BEFB94]
and the references therein).
We now show how the drawbacks with the bisection scheme can be avoided altogether, by reformulating
Problem (4.7) as a Generalized Eigenvalue Minimization Problem or GEVP. A GEVP is an optimization
problem of the form

Minimize: A
Subject to: AB(z)— A(z) >0, B(z) >0, C(z)>0.

Here z € R” is the optimization variable, and A(z), B(z) and C(z) are symmetric matrices that are affine
functions of z, i.e.,

A(:L‘) = Ao +.’61A1 + '-'+Z'pAp, B(:L') = Bo -|—:L‘1Bl + . '-+.’L‘po, C(.’E) = Co+.’l,'101 + ---+:L‘,,Cp,

where A;, B; and C; are given symmetric matrices. GEVPs are quasiconvex optimization problems based
on linear matrix inequalities, and can be solved very efficiently using standard algorithms (see for exam-
ple, [BEFB94, BE93, GN95)). In particular, as we will demonstrate in §4.4, the solution of Problem (4.7) as
a GEVP leads to considerable computational savings over the solution via a bisection scheme.

The following restatement of the positive-real lemma, taken from [Ran96], plays a central role in the
reformulation.

Lemma 4.2.2 Let A € R"*", B € R™*™ and M = MT € Rm+m)x(m+n) yith A having no eigenvalues
on the imaginary azis. Then, the following statements are equivalent.

1. For some ¢ > 0,

o -1 * s oAy-1
. [(]wI IA) B] M[(le IA) 3]2261, for allw € R.

2. There ezists a symmetric matriz P = PT such that

ATP+PA PB
[ BTP 0 ]<M'

Given v > 0, Lemma 4.2.2 then enables us to restate the condition that (4.4) is feasible for some Il € Ilg,
as an LMI feasibility condition.

Lemma 4.2.3 Let H(s) has the state space realization (A, B, C, D) with A having no eigenvalues on the
tmaginary axis. Let

[ Aw BwC 0 C[BwD] | e a
i=| 0o a4 o |, B=| B |, €= ,
00 I
0 0 Aw Bw o0l
. (4.8)
- | b [cow o0
po |2 el 0
I

Then, given v > 0, there exist some II € Ilg, and € > 0 such that condition (4.4) holds if and only if there

ezist symmetric matrices P = PT, Q, = QT and Q2 = Qg, and [ R}l Riz ] € Q such that
Ri; —Ra»
. T
M, = ETR,\E - [ AwQ1T+ Qdw GBw | 0, (4.9a)
By Q1 0
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T
M, = ET Ry F — [ Aw@: + Q24w Q2Bw } >0, (4.9b)

B Q2 0
ATP4+PA PB ér M BTRE |
[ BTP 0 ] + ,: ET :l ETRfll’zE ":y"MQ [ C D ] < 0. (49C)

Proof: Consider the condition that given 4 > 0, there exist II € Ilg, and € > 0 such that condition (4.4)

holds, i.e., there exists [ Rfli} R1z ] € Q such that with
Ri; —Ro

Loy Cw(ij —Aw)_lBW ]
W(jw) = [ Dy )
we have:
For some € > 0, for all w € R, W(jw)* R11W(jw) > 2¢I and W(jw)" RaaW (jw) > 2¢l. (4.10a)

For some € > 0, for allw € R,
H(jw) 1" YW(jw)*RuuW(jw)  W(jw)*R12W(jw) H(jw)
[ I ] W (jw)* RT,W (jw) —;W(ju)*RZQW( jw) [ I

] < 2. (4.10b)

Using Lemma 4.2.2, it is easily argued that condition (4.10a) is equivalent to the existence of @, = QT and
Q2 = Qg such that

[ AT, Q1+ Q1Aw  Q1Bw ]
M, =ETRE—-| "W 0
1 Ry _ BLQ, 0 >0,
and ATy + Qo 0.8
— T _ w2+ Q2Aw 28w
My = E" Ry F - qu{;Qz 0 J > 0,

where E is defined in (4.8); moreover, it is easily verified that for allw € R,

I 1

[ (ij—AW)_lBW ]*Ml - (ij—Aw)—lBW ] _ W(jw)*RuW(jUJ);

and

[ (wI - A}v)_le ]* M, [ (JwlI —AIW)_IBW ] = W(jw)* Ry2W (juw).

Then, with A, B, C and D as given by (4.8), condition (4.10b) can be rewritten as:
For some ¢ > 0, for all w € R,

N - . Nk ‘)’Ml ETRle _ . - - 4.11
(C(ij—A)‘lB+p) [ETR%E _%Mz (Gliwr - Ay1B+D) <—2er. (M)

Condition (4.11), using Lemma 4.2.2, is equivalent to the existence of P = PT such that

~ ~ - ~ T
ATPy+PA PB er vMy B Rk (6 B]<o 412)
BTpP 0 pT ETRL,E —=M, < 0. (4.
v
o

This completes the proof.
Lemma 4.2.3 immediately enables the reformulation of Problem (4.7) as a GEVP, which is the central

result of this chapter.
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j Theorem 6 Let kope be the optimal value of the GEVP
|
| . Minimize: K
|

Subject to: P =PT Q,=¢Q7, Qg:Q?,X:XT>O,Y.=YT>0,

A

M, = ETR,,E — [ A%QBliQ?lAW Q1(1)3W ] >0, )
My = ETRooE — [ A%QBng:*-QQZZAW QzOBW ] >0,

(75 W ][5 [ T80 10 1o

. X 0 | (M O >0
0 M, 0 Y ’
where A, B, C, D, and E are defined in (4.8). Then, the optimal value of Problem (4.7) is 1/kopt.

Proof: Follows directly from Lemma 4.2.3, with the introduction of “slack” variables X and Y and the
change of variable k = 1/7. o

4.3 Specified structured uncertainties

. With the preliminaries in §4.2, we now consider a number of special cases for A. In each case, the corre-
sponding set IT defining the IQCs satisfies assumption (4.3), so that the results of §4.2 apply.

4.3.1 Diagonal nonlinearities

Suppose that

PN — {n | M(jw) = [ v ] for all w € R, W € R™ ™ W > 0 and dia,gonal} L (419

Every “diagonal” A with an L, gain that does not exceed one, satisfies every IQC from IIPNL . Note that
IIPNL g already described by a finite number of variables so that IIPNY = TIPNL and is defined by (4.6),

where Aw, Bw and Cw are vacuous, Dy = I, and Q = ITPNL,
From Theorem 6, Problem (4.7) is equivalent to the GEVP

Minimize: K
Subject to: P=PT X=XT>0,Y=Y7 >0, W e R™™ and diagonal, W > 0,

<0 (4.15)
BTP 0 DT 1|lo0 -y ||o I ’

X 0 W 0
“[0 W]_[O Y]>m

with 1/kope being the optimal lower bound on 7y,. This GEVP formulation is exactly the same one derived
in [EBFB92] for minimizing the Hy, norm of H(s) = C(sI — A)"'B + D over diagonal similarity scalings

. (also see [GA94]).

[ATP+PA PB] [CT 0][X 0][CD
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4.3.2 Diagonal, memoryless, time-invariant, sector-bounded nonlinearities

Suppose that D = 0, that is, H is strictly proper, and

[Popov — {H ' (jw) = [ jcljl‘ _Z‘XF ] forallw € R, A, T € R™*™ and diagonal, A > 0} .

The set of uncertainties satisfying every IQC from IIF°P°V contains the set of all diagonal, memoryless,
time-invariant nonlinearities, with the diagonal entries in sector [—1, 1]; see [DV75, MR97]. These are often
referred to as diagonal “Popov-tyBe” uncertainties.

Note that the elements of II;P°" are not bounded on the imaginary axis. But a simple change of
variables enables us to address this problem. (This is a standard technique, used to derive the Popov
criterion; see [DV75, MR97].) We simply define H(s) = H(s)(1 +s) = (C + CA)(sI — A)"'B+CB, and
A = Ao1/(1+ s), and observe that the stability of the H-A interconnection is equivalent to that of the
H-A interconnection. Now, A satisfies every IQC from

1 —jw

1+ w? A 1—jw T
. | oGy =| ! for all w € R,
HPopov =41 jw B
—T A
14 jw
A, T € R™*™ and diagonal, A >0

The set TTP°P%" is described by a finite number of variables so that ITP°P%V = TI£°P°" | and is defined by (4.6)
with Aw = —I, Bw =Cw = Dw =1, and

-T
A, T € R™*™ and diagonal, A > 0

A 00

Popov __ 0 00 T
@ - 0 00 0
-I' T 0 —-A

Then, applying Theorem 6 to the H-A interconnection, we get the following GEVP.

Minimize: K

Subject to: P=PT X=XT>0,Y=YT >0, A and I are diagonal, A >0,

X 0 0 -T
ATP+PA PB cT 0 00 T o =
[BTP 0][157‘] 0 00 o |LC DI<O
-T' T 0 -Y
X 0 Ao,
flo Al o v |9
where
I 0 0 0
-I C+CA 0 CB
i=lo 4 o | B=|B |, c=|0CHtCA 0| H_|CB
0 0 -1 I 0 0 I 0
0 0 0 I

The optimal lower bound on v, is given by 1/&qpt.

4.3.3 Parametric uncertainties

Suppose A is a constant real matrix with a specified block-diagonal structure, and with a spectral norm
that does not exceed one: A = diag(Ds,...,Dm,dile,,...,dnley), Di € REixki 5 =1 .. M, d €R,
i=1,...,N, with omax(A) < 1. (Note that 3" ki + 3 € =m.)
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Then, A satisfies every IQC from

. X(jw Y (jw e . .
e = | HOw) = [ —ngwg —ngwg ] =1(Gw)", X(jw) and Y(jw) €W, {
for some € > 0, X(jw) > 2¢l, for allw € R

where

w, €C,1=1,...,. M } (4.16)

W = {diag(wll;cl,...,wMIkM,Wl,...,WN) W: € Clini i=1 N
13 b - LA |

(See for example [Bal95, MR97].)

For such uncertainties, Theorem 6 can be immediately used to obtain GEVPs that yield a guaranteed
lower bound on the robust stability margin. Let P denote the subset of real matrices that lie in W, i.e.,
P=WNOR™*™.

Then, a subset ITE. of ITP?", described by a finite number of variables, can be defined as follows. Let
w® . W®-1) be strictly proper, stable mx m transfer functions, with each W) satisfying W(i)(jw) eEW
for every w € R.. Let

611 612 -+ Oin
621 b2z -+ bon
oF — - 0;EP . (4.17)
On1 On2 -+ ONN
Then, a subset IIZ." of ITP2" described by a finite number of variables is given by (4.6), where (Aw, Bw,Cw)
is any state space realization of [W(I)(s)T ... W(N"l)(s)T]T, Dw =1, and
e+0T o-9o7
par _ par

Thus, the problem of computing lower bounds on the robust stability margin of systems with parametric
uncertainties can be efficiently solved as a GEVP.

Note that the choice of W) is ad hoc, and the value of kopt Will certainly depend on this choice. However,
for any choice of W), the inverse of the optimal value Kopt Obtained from GEVP (4.13) is a guaranteed
lower bound on the robust stability margin v,,. Moreover, it can be shown (see [CTB97a]) that the actual
choice of the W() is immaterial, provided the set of W(s is chosen to be “rich enough”.

4.3.4 Structured dynamic uncertainties

Suppose A is a dynamic block-structured uncertainty with an Lg-gain that does not exceed one (i.e., it is
nonexpansive): For all w € R, A(jw) = diag(D1,...,Du,d1le,,...,dnIey), D; € CFXki i =1, M,
d;€C,i=1,...,N, with omax(A(jw)) < 1. (Note that > k; + > ¢ = m.)

Then, A satisfies every IQC from

. 0] /. .
HLTI — I H(]w) - [ 0 —X(]w) ] - H(]w) ) X(]w) € W, ,
for some € > 0, X (jw) > 2¢I, for allw € R

where W is defined in (4.16) (see for example [Bal95, MR97]). Similarly to the development in §4.3.3,
METT € TP can be described by a finite number of variables. Let W), ..., W(N-1) be strictly proper,
stable m x m transfer functions, with each W() satisfying W#)(jw) € W for every w € R. Then, a subset
IETT of TIVTT described by a finite number of variables is given by (4.6), where (Aw, Bw,Cw) is any state

space realization of [W()(s)T ... W(N"l)(s)T]T, Dw =1, and
LTI _ o + @T 0 par
Q= {[ 0 _(e+07) ©co . (4.19)

Thus, the problem of computing lower bounds on the robust stability margin of systems with structured
dynamic uncertainties can be efficiently solved as a GEVP.
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4.4 A numerical example

We present an application of the results of this chapter on a simple example. Consider an instance of the
H-A interconnection system with

i 0.2 —-1.5 —s24+095—0.2 7
s24+0.1s+0.7 s240.1s+0.7 s340.452+0.735+0.21
H(s) = s —7.5s 10s2 + 35+ 3.5
s24+0.1s+0.7 s2+40.1s+0.7 s340.452+0.73s+4+0.21
-2
L 0 0 s+0.3 .

With A assumed to be diagonal in addition to satisfying various IQCs, we now demonstrate that significant
computational savings accrue when the lower bound on the robust stability margin is computed using the
GEVP formulation from Theorem 6, as compared to a bisection scheme.

In implementing a bisection scheme to solve Problem (4.7), we used & = 1/ as the optimization variable.
Upper and lower bounds on the optimal value kop¢ that are required to initialize the bisection can be
computed using different methods; and the performance of the bisection scheme can be made arbitrarily
poor by choosing the bounds to be far enough apart. We avoided introducing any such bias against the
bisection scheme as follows. In all cases that we consider, A satisfies the IQC with II = diag(I,—I), and
therefore ||H||o is an upper bound on Kope; this can be computed very efficiently using the algorithms
in [BB90]. A lower bound on kop is simply zero. The upper bound can also be readily incorporated into
the GEVP (4.13). We denote the GEVP with this additional linear constraint as GEVPWB.

Table 4.1 shows a comparison of the performance of the bisection and the GEVP schemes. In every case,
Kopt Was computed to an relative accuracy of 1%. In the case of diagonal parametric uncertainties, IT5>"
was given by (4.6), (4.17) and (4.18), with the following choices: Aw = diag(—10,—-10,~10), Bw = Cw =
Dw =1, and

P — {[ gi: z;z ] ‘ 6;; € R®*3 and diagonal} .
In the diagonal dynamic uncertainties, H%;“ was given similarly, with the only difference being in the
definition of 2, which was given by (4.19). All LMI computations were performed using the LMI Toolbox of
MATLAB [GN95], and computation times on a Sparc 20 are reported here?. The numerical results show that
GEVP is always considerably more efficient than the bisection scheme. In addition, this example suggests
that a priori knowledge of an upper bound on kopt makes little difference to the performance of the GEVP.

[ Uncertainty Type | 1/Kopt | Bisection (sec) | GEVP (sec) [ GEVPWB (sec) ||
General nonlinear | 1.2896 x 10~ 5.6800 0.8200 0.8000 ]
Dynamic 1.2899 x 10~2 62.5700 20.3000 18.9200 "
Popov-type 1.3264 x 10~2 99.5700 26.5300 26.1200 f
Parametric 1.3278 x 10~* 51.8400 19.8300 19.1700 |

Table 4.1: A comparison of the bisection and GEVP schemes. All uncertainties are assumed to be diagonal.

4.5 Conclusion

We have shown that a guaranteed lower bound on the robust stability margin for a number of commonly
encountered uncertain systems can be computed via generalized eigenvalue minimization. Examples show
that the GEVP reformulation of the robust stability margin lower bound computation leads to considerable
computational savings. The results presented herein also apply to many other uncertain systems, besides
the special cases considered in §4.3; see for example, [MR97] and [TBL96].

2Though the values of the time themselves are not very meaningful as they depend on the hardware used, the ratio of the
computation time of the bisection scheme to the GEVP scheme still provides a meaningful basis for comparison.
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Chapter 5

Gain-Scheduled Controller Synthesis

We present new algorithms for the robust stability analysis and gain-scheduled controller synthesis for
linear systems affected by time-varying parametric uncertainties. The new techniques can also be applied
to parameter-dependent nonlinear systems with real rational nonlinearities. Sufficient conditions for
robust stability as well as conditions for the existence of a robustly stabilizing gain-scheduled controller
are given in terms of a finite number of Linear Matrix Inequalities; explicit formulae for constructing
robustly stabilizing gain-scheduled controllers are given in terms of the feasible set of these LMIs. Our
approach is proven to be in general less conservative than the existing methods for stability analysis and
gain-scheduled controller synthesis for parameter-dependent linear systems and real rational nonlinear
systems; numerical examples are presented to show that our approach offers significant improvement in
practice as well.

5.1 Introduction

Consider the parameter-dependent system

A(8(t))z + B(8(1))n, (5.1a)
C6(t))z + D(6(2))u, (5.1b)

where z(t) € R”, u(t) € R"* and y(t) € R"v, and A, B, C and D are real-valued rational functions of
the time-varying parameter vector 8(t) = [01(2)---0m(t)]T € R™, which for all ¢ > 0 is restricted to lie
in a polytope ® C R™ containing the origin. (When © is not a polytope, the results developed herein
can still be applied by replacing ® with some polytope ®pqy D ©.) For convenience, from now on we
will often drop the dependence of 6 on ¢t. The signals u and y have the interpretation of the control input
and the measured output respectively. We assume that the parameters 6(t) are unknown a priori, but
can be measured in real-time, so that they can be incorporated, if possible, in a “gain-scheduled” control
strategy. System (5.1) models a wide variety of commonly-encountered parameter-dependent systems; see,
e.g., [Doy82, ZKSN92, AGB95, DG98].
We consider questions of stability analysis and stabilizing controller synthesis for system (5.1):
(P1) With u identically zero, does the state z of system (5.1) satisfy lim;_. () = O for every initial
condition z(0)? If so, we say the system is “robustly stable over ®”.
(P2) Does there exist a control law u = K (y, 8,t) such that the state z of system (5.1) satisfies lim;_, o 2(t) =
0 for every initial condition z(0)? If so, we say the system is “robustly stabilizable over ©”.

In addition, for a uncertainty set ©®, we define the robust stability margin of system (5.1) as
om = sup {c | for any v € [0, o], system (5.1) is robustly stable over y® } (56.2)
and the robust stabilizabilily margin as

pm = sup {p| for any v € [0, p], system (5.1) is robustly stabilizable over y©® }. (5.3)

0Joint work with Fan Wang, Ph.D., School of Electrical and Computer Engineering, Purdue University.
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Let us first consider the question (P1), that of robust stability over ®. A number of numerally tractable
sufficient conditions are available for robust stability, depending on the assumptions on the function A(8(t)).
One class of sufficient conditions is based on the notion of quadratic stability: The system & = A(8(t))z is
said to be quadratically stable if and only if there exists a single quadratic Lyapunov function V(z) = 2T Pz
whose derivative is negative along every trajectory of the system, or equivalently, there exists P = PT such
that

P>0, PA@) +A@)TP<O0foralld(t) €O. (5.4)

For the simplest case when A(6(t)) is an affine function of #(¢) (this is the so-called “polytopic sys-
tem” [BEFB94]), a necessary and sufficient condition for quadratic stability can be given in terms of a finite
number of LMISs, one for each vertex of the polytope ® [HB76, BY89]. The use of more general Lyapunov
functions offers the potential for improved robust stability analysis. One such technique uses parameter-
dependent Lyapunov functions; for systems with slowly time-varying parameters, stability analysis using
parameter-dependent Lyapunov functions usually leads to less conservative robust stability conditions than
the analysis based on quadratic Lyapunov functions [GAC96, GN95].

The approach towards answering question (P1), for systems having more general uncertainties than poly-
topic ones, uses a linear fractional representation (LFR) for parameter-dependent systems [BBB91, KG96].
Here, the parameter-dependent system is represented as an LTI system, with the uncertain parameters ap-
pearing in the feedback loop as a diagonal uncertainty A (see Fig. 5.1). Then, scaling matrices can be used
in conjunction with the small-gain theorem to yield sufficient conditions for robust stability of system (5.1);
see for example, [BDG*91, FTD91, MR97]. In a special case when the uncertainties are time-invariant,
the most sophisticated (and least conservative) technique available to date uses the framework on multi-
plier theory [DV75, HH93a, SC93, Bal94al, or equivalently in this case, the framework of integral quadratic
constraints [MR97]; these approaches correspond to searching for general Lyapunov functions [Bal94b].

q H 2

Figure 5.1: LFR of parametric uncertain systems

The problem of controller synthesis (P2), has turned out to be considerably harder. While the problem
of robustly stabilizing constant state-feedback synthesis for polytopic systems as well as LFR systems with
real constant scalings has turned out to be convex, no convex reformulations are known for the problem of
even constant output feedback synthesis for even polytopic systems. This makes the general output feedback
controller synthesis problem very hard to solve numerically. The approach that holds the most promise
for output feedback synthesis appears to be that of gain-scheduled controller synthesis’: Since in many
applications the parameters #(t) can be measured [AGB95, DG98, SA92], we can design feedback schemes
that are themselves parameter-dependent. Designing gain-scheduled output feedback controllers for polytopic
systems or LFR systems, using a single quadratic Lyapunov function can be reduced to finding the feasible
set of a finite number of LMIs [Bec93, AGB95, AG95, Sch96a, CG95]. Gain-scheduled controller synthesis
for polytopic systems using parameter-dependent Lyapunov functions is also studied in the literature, see
for example [AA98, WYPB94]. In this case however, one usually needs to grid the parameter space made
up of the uncertainties and their first derivatives [AA98, WYPB94]; thus, in a sense, one needs to check an
infinite number of LMIs. Although parameter gridding can be avoided in some cases, it requires either more
restrictive assumptions on the system matrices [AA98], or the use of a more conservative cover for the set of

uncertainties [YS97].

10ur use of the term “gain-scheduled” refers to the framework of LMI-based gain-scheduling techniques [AA97, EGS96,
Bec93, Wu9s). This is different from classical gain-scheduling controller synthesis techniques, where several controllers are
designed for the system under different operating conditions, with the actual control law “switching” between the locally
designed controllers using some “scheduling” scheme [SA90, SA92].
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Our approach uses the framework of quadratic (or parameter-dependent Lyapunov function based) sta-
bility and the LFR representation as do [Bec93, AGB95, AG95]. However, our method for robust stability
analysis is less conservative than the conventional methods using constant scalings, but enjoys the same
advantages:

e Our method results in a finite number of LMIs;
e Our method can be extended to the synthesis of gain-scheduled controllers;

e Our method is based on quadratic (or parameter-dependent) Lyapunov functions, and therefore can
be extended to robust performance analysis and synthesis.

Indeed, we will show that the conventional constant scaling method can be viewed as a special case in our
approach.

Our approach can be interpreted as combining vertex-type quadratic stability results for polytopic systems
with conventional scaling techniques; thus our approach can effectively take advantage of the knowledge of
polytopic covers that describe the uncertainties more accurately than conventional norm bounds. In addition,
we will demonstrate that even when only a norm-bound condition on the uncertainties (or equivalently, only
a hypercube cover) is available, our approach enables the use of unstructured scalings, as opposed to the
usual structured scaling techniques. As a consequence, our robust stability analysis conditions are always less
conservative than the stability analysis using structured scalings. Perhaps more significantly, our approach
also readily leads to tractable LMI conditions for the existence of a gain-scheduled output feedback controller.
In addition, the controller designed in our approach can be easily implemented in real-time.

The organization of this chapter is as follows. In Section 5.2, we outline the improved stability criterion
for parameter-dependent systems derived using the LFR framework. We extend this robust stability analysis
technique to solve the problem of gain-scheduled output feedback controller synthesis in Section 5.3. In Sec-
tion 5.4, we demonstrate through numerical examples that the new approach offers significant improvement
over existing constant scaling techniques.

5.2 Robustness analysis using Lyapunov functions

5.2.1 Quadratic stability analysis

Consider the state-trajectories of the system (5.1) with u identically zero:
z=A(0())z. (5.5)
Since A(8(t)) is a real-valued rational function of 6(t), we have
A(0(t)) = A+ B,AB®)I — DpeAB(1) ' Cp

for some appropriate matrices? A, By, Cp and D,,. Then, an equivalent linear-fractional representa-
tion [BBB91, EGS96, KG96] of the autonomous system (5.5) is given by

t=Az+ Byq, p=Cpz+ Dpgq, ¢=A0)p, A(0)=diag(b1l,,...,0n1L,), (5.6)
where 2 € R?, ¢ € R4, p € R? and A4, By, Cp, Dp, are real matrices of appropriate sizes, with A being
Hurwitz, i.e., with all its eigenvalues having negative real parts. The quantity max(sy, - - -, s, ) will be termed
the LFR degree of system (5.6).

Define
A={A@B) |6t ecO}. (5.7)

Obviously A is a polytope as well. Let A;, ¢ =1,...,r be the vertices of A. The following theorem gives a
sufficient condition for the system (5.6) to be quadratically stable.

2Here we assume the LFR is well-posed, i.e., , det(I — DpqA(8(t))) # 0, Vé(t) € ©.
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Theorem 7 System (5.6) is quadratically stable if there exists P € R™ ™ with P = PT > 0 such that for
every A € A, there exist Ga € C**¢% and Hp € C¥9 satisfying

[ PA+ ATP + GaC, + CTGA* P(ByA) + Ga(DpgA) — Ga + CTHA® ] <0. (58
(ByA) P+ (DpgA) Ga* — Ga* + HACp Ha(DpgA) + (Dpg A)THA* — Ha — Hp* ‘ '
Moreover, V() = yT P+ is a Lyapunov function that proves the quadratic stability of system (5.6).

Proof: Suppose there exist P = PT > 0, Ga € C%*? and Ha € C?%¢ satisfying (5.8) for all A € A.
Consider system (5.6) for some A € A. The equations governing the system can be rewritten as

& = Az+ (B;A)p, (5.92)
p = Cpz+ (DpgA)p. (5.9b)
Now, for any Ga € C?*4 and Ha € C9*4, we have
:cTG'Ap = xTGAC’pm + :cTGA(quA)p,
pTHap = PTHACP-'E + PTHA(quA)p»
or equivalently

[x ]T[ GaCp + CTGA® Ga(DpgA) — Ga+ CTHA® ] [ z } ~0. (5.10)
P (DpeA) Ga* — Ga™ + HACy, Ha(DpgA) + (DpgA)THaA* —Ha—Ha* | p |~

Then, we have

z ]T [ PA+ ATP P(B,A) ] [ z ]

d
Ez(:c(t)TPl‘(t)) = [ P (BqA)TP 0 P

[T Gy " ][]

[m }T[ GaCyp+CTGA* Ga(DpgA) — Ga + CTHp® ] [ z]

+ * * * *
P (DpgA)T Ga* — Ga* + HAC, HA(DpgA) + (DpgA)Y Ha* — Ha — Ha P
< 0.
(This is simply an application of the S-procedure; see, e.g., [BEFB94] and the references therein.) m]

Theorem 7 implies that the quadratic stability of system (5.6) can be established by checking condi-
tion (5.8) for all A in the polytope (5.7). With no restrictions on G5 and Ha—these matrices may depend
on A—this entails verifying infinite number of matrix inequalities. This issue can be addressed by simply
restricting Ga and Ha to be of special forms such that the left hand side of inequalities (5.8) is convex in A.
It is then sufficient to check that inequality (5.8) holds for A;, ¢ = 1,...,r, the vertices of the polytope (5.7).
One such choice for Ga and Ha is described in the fellowing Corollary; this choice is interesting in that it
can be interpreted as an “unstructured scaling” technique.

Corollary 2 System (5.6) is quadratically stable if there exist P = PT > 0 and M = MT > 0 such that

ATP 4+ PA+CTMC, PByi+CTMDy,; -
[ BZ:,-P +D;fq,,~MCp -M +ng,iMqu,i <0, i=1...m (5.11)

where By ; = ByA; and Dpg; = Dy A

Proof: Condition (5.8), with Ga = CTM/2and Hp = ((quA)T+I)M/2, reduces to (5.11). The conclusion
of the corollary then follows from Theorem 7. D
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Remark 5.2.1 Corollary 2 can be viewed as an extension of the well-known structured scaling methods for
robusiness analysis. Consider the special case when © = [—v,y]™ with v > 0, i.e., when it is a hypercube.
In this case, the structured scaling techniques [EBFBY2, GA94] can be shown to be equivalent to condi-
tion (5.11), with the additional restriction that M = MT > 0 has such a structure that it commutes with
A. (In our condition (§.11), M has no other constraints other than being positive definite.) More signif-
icantly, our approach can also effectively take advantage of the knowledge of polytopic covers that describe
the uncertainties more accurately than conventional norm bounds.

While the quadratic stability condition (5.11) is less conservative than the conventional structured scaling
methods, this comes at the ezpense of an increased number of optimization variables, owing to M being
unstructured. In addition, the number of LMIs in our condition (5.11) equals r, the number of vertices of
A. This reflects the added price to pay for the improvement in the robustness analysis [AGBY5, BEFB9]].

Other special cases for Gao and Hp are listed below:

1. Let Ga = G and Ha = H be any unstructured real constant matrices. Then (5.8) is feasible if

[ PA+ATP+GCp+CTGT  PByi+GDpyi —G+CTHT

BI.P+DY .GT —GT + HC, HDpy;+ DL ;HT —H—HT

]<0, i=1,...,r, (5.12)
Pq,

where By ; = ByA; and Dyq i = DpgA;.

2. Let Ga = CTM/2 and Ha = ((quA)T + I)M/2 + ATS*, with A = AT, M = MT > 0 being a real
constant matrix and S = —S*, and with both M and S commuting with A. Then (5.8) is feasible if

ATP+PA+CTMG, PB,A + CTMDy A+ CTSA

—M-{-ATD;‘IMDPQA <0. (5.13)

T pT T T _ AT
ATB{P+ATDLMCG, —ATSC, AT prsa PATgp, A

q
If S = —S7 is real and skew-symmetric, (5.13) yields the stability criterion derived in [EGS96], which
is also the stability criterion for systems affected by time-varying real uncertainties, obtained in the

IQC framework [MR97]. If S = jN with N = N7 being real and symmetric, (5.13) gives the constant-
scaling version of the the stability criterion from real-u analysis [FTD91].

3. Consider the special case when Dy, = 0. Let Ga = (QCp)T/2 and Ha = (25A + Q)T/2, where
Q = QT and S are real matrices. Then (5.8) is feasible if

ATP+PA+CTQC, PB,;+CTS; .
[ BZ,-P+SZ-’"(pJp —(Q+S,~+p5?)]<0’ p=1n (5-14)
where S; = SA;. Condition (5.14) is sufficient and necessary for the quadratic stability of the system
z = (A + ByA(8)Cp) z over O, see [MRI7]. Also note that in (5.14), P is not necessary to be positive
definite. However, since we are interested in the quadratic stability, we require P > 0 in this chapter.
Indeed in our case, we can always define S; = —Q = I without arising more conservatism (See
Section 5.6).

For another special case when the LFR degree of system (5.6) is one, further reduction in the conservatism
of condition (5.11) is possible. Here, let Ga = C;TMA/Q and Hp = ((quA)T +1)Ma /2, where Ma depends
on A. Then, (5.8) is equivalent to

T T T
[ AP+ PATC, MaGy P(ByA) +Cp Ma(Dped) | o A ¢ Cofay,...,A}.  (5.15)

(BqA)TP + (quA)TMACP —Ma + (DMA)TMA(DMA)

Since Ma is a variable depending on A, condition (5.15) is less conservative than condition (5.11). While
condition (5.15) is not tractable in general as it includes infinitely many inequalities, for the special case
when the LFR degree of system (5.6) is one, condition (5.15) is equivalent to checking a finite number of
LMIs, as the following shows.




Corollary 3 Suppose the LFR degree of system (5.6) is one. If there exist real positive matrices P = PT>0
and M; = MT > 0 such that

ATP + PA+CTM;C, PByi+Cy M;Dpyi .
By P+ Dy i M;C,  —M;+ Dgf,iMiqu,i <O r=hoon (5.16)

where By; = ByA; and Dpq; = DpAi, A; is a vertex of the polylope (5.7), then the system is quadratically
stable.

Proof: Inequality (5.16) implies that there exists a quadratic Lyapunov function V(¢) = 47 Py, such that
P >0and

P(A+ ByAi(I = DypgAi)™1Cp) + (A4 BeAi(I = Dy A)IC)TP <0, i=1,...,r

(This follows from an argument exactly along the line of the proof of Lemma 7.) Now, since the LFR degree
of system (5.5) is one, it turns out (see [BY89]) that

Co {A+ ByAi(I — DpgAi)™'Cp |i=1,...,7}
= {A+B,A(I - DpeA)™'Cp | A€ CofAy,...,A}}.

Therefore,
P(A + ByA(I = DpgA)™1Cp) + (A + ByA(I — Dpy A)1C,)T P < 0,

for any A € Co{A;,..., A}, and system (5.5) is quadratically stable. (]
Condition (5.16) is clearly less stringent than condition (5.11), as it allows for different scaling matrices

M; for different vertices. We will therefore refer to the application of Corollary 3 as a vertex-dependent

scaling method or simply “vertex scaling”. '

5.2.2 Robustness analysis using parameter-dependent Lyapunov functions

In Section 5.2.1, the robustness analysis is based on a single quadratic Lyapunov function. This approach
can be easily applied in the robust performance analysis. More significantly, this approach leads to convex
conditions in solving synthesis problems, which will be shown in Section 5.3.

If system (5.5) is affinely parameter-dependent or polytope type parameter uncertain systems, and if the
time varying rate of the uncertainty 8 is bounded and lies in the set ® (specially ® = {0} when 6 is a real
constant uncertainty), [GAC96] shows that the quadratic Lyapunov function method can be extended by
using parameter-dependent Lyapunov functions: The system & = A(f)z is stable if there exists a parameter-
dependent Lyapunov function V(z) = 27 P(8)z such that for all 6(¢) € O,

P(8) >0, P(8)+ P(6)A(6) + A(0)T P(8) < 0. (5.17)

Since the knowledge of the time varying rate of the uncertainty is incorporated in the analysis, Condi-
tion (5.17) is evidently less conservative than condition (5.4). However, condition (5.17) consists of an
infinite number of inequalities, even in the simple case when A(6) and P(f) are restricted to be affine func-
tions of 8. Multi-convexity techniques are proposed in [GAC96, GN95, AT98] in order to derive a sufficient
condition, consisting of a finite number of LMIs, for (5.17) to hold.

Robust stability condition (5.17) has been applied to design gain-scheduled controllers, using multi-
convexity techniques [AA98, AT98], or using a more conservative cover of the set of uncertainties [YS97].
The use of parameter-dependent Lyapunov function to solve the problems at hand, i.e., when the state space
matrices are real-valued rational functions of 6(t), remains essentially unexplored.

Our approach is combining the polytope type system analysis method and conventional constant scaling
techniques to solve the robustness problem of LFR uncertain systems. Following the same line as Theo-
rem 7, we derive a sufficient condition for robust stability using parameter dependent Lyapunov functions; in
addition, the associated controller synthesis problem can also be reformulated as a convex optimization prob-
lem. The stability condition using parameter dependent Lyapunov functions is summarized in the following
corollary.
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Corollary 4 Let ©; = [@il"‘eim]T; i = 1,...,r be the vertices of @ and A; = A(©;). Let & =
[®k1---@rm]T, k=1,...,v be the vertices of ®. System (5.6) is stable for all § satisfying (6,0) € © x & if
there ezist Q; = QT € R**™ and M = MT > 0 such that

[El%”'f“ El“]<0 and Qo+ .0:Q; >0, i=1,...,r, k=1,...,v, (5.18)
i=1

where

m m m
Ena=A[Q+) 0:;Q; | + Qn+Z®uQ;‘ AT + By MBT, - Y #4;Q;,
j=1 j=1

j=1

Epi=|Qo+ Z 0;;Q; C;? + Bq,iMng,i’
i=1
Eyi=—M + DpgiMD,, ;,

and Bq,i = Bin, qu,i = quA,', = 1...7‘, k=1...v.

Proof: It is easy to establish using routine matrix algebra that if conditions (5.18) hold for all the vertices
(©i,®;), they also hold for any uncertainty 8 with (6,0) € ® x ®. Following the same line as the proof of
Theorem 7, it can be shown that the affinely parameter-dependent Lyapunov function

V(e) =27 (Qo + fja,-(t)Q,-) z

i=1

provides a guarantee for the stability of system (5.6) for all § satisfying (8, 6) €EO x P, a
When @Q; = 0,7 = 1,...,m, condition (5.18) reduces to the robust stability conditions based on a
single quadratic Lyapunov function, given in Corollary 2, where the information on the rate of variation
of the uncertainty is not incorporaied into the stability analysis. Thus Corollary 4 offers the potential for
an improved stability analysis when information on the rate of variation of the uncertainty is available.
However, this comes with the added price that an LMI needs to be checked at every vertex of ©® x &.

If the set ® x ® is symmetric around the origin, i.e., , (6,6) € © x ® implies (—§, —0) € © x @, it can be
verified that if condition (5.18) is feasible for some @Q;, then the system must be quadratically stable, i.e., ,
Q; = 0,i=1,2,.... Therefore in this case Corollary 4 offers no improvement over quadratically stability
condition. However, for many cases when set of uncertainties is not symmetric around the origin, Corollary 4
can be strictly less conservative than the quadratic stability condition (see the numerical example).

Note that Corollary 4 offers a direct approach for the use of parameter-dependent Lyapunov functions in
the analysis of systems that exhibit a rational dependence on the parameters. This in contrast with indirect
techniques such as using a (conservative) polytopic cover for

{(e,é,elol,...0,~9,-,...,9m0,,,)|9 cO,ic®, i< j}

as in [GN95, YS97], or using a conservative multi-convexity method [AA98, GAC96, AT98).

5.3 Gain-scheduled output feedback synthesis

We next consider the problem of designing a gain-scheduled output feedback control strategy u = K(y, 6(t))
such that system (5.1) is robustly stable. In particular, we show that the sufficient condition for robust
stability that we stated in Corollary 2 and Corollary 4 for system (5.5) can be directly extended to designing
a gain-scheduled controller K (y,8(t)) that is guaranteed to stabilize system (5.1). As noted in Section 5.2,
our analysis technique guarantees a larger stability margin over conventional constant structured scaling
methods; therefore, the corresponding gain-scheduled controller will come with a larger guaranteed closed-
loop stability margin as well3.

3In this context, we cite the works [SNB97, Sch96b], in which full block scalings method is used to solve gain-scheduled
controller synthesis problems. The robust stability condition using full block scalings is less conservative than condition (5.11).
However, the procedure to construct controllers using full block scalings method is numerically delicate.
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Consider system (5.1). Since A, B, C and D are real-valued rational functions of ¢, we have

[ A(6) B(9) ]: [ A By ]+[ B, ]A(a)(I—quA(G))‘I[ Cp Dpu ] (5.19)

Cc(6) D(9) Cy Dyu Dy,
for some appropriate matrices A, By, By, Cp, Cy, Dyq, Dyu, Dpg and Dpy. Then, an equivalent linear-
fractional representation of system (5.1) is described by

= Az + Byqg+ Byu, p=0Cpz+ Dpq+ Dpuu, y=Cyz+ Dygq+ Dyuu.
(5.20)

q= A(e)p, -,amIsm);

where z € R®, ¢ € R%, p € R?, u € R" and y € R"v. We will henceforth assume that Dy, = 0 and
Dy, = 0. The former is a standard assumption and can always be satisfied via loop transformations, while
the latter is a technical assumption that implies that there is no uncertainty in the measured output.

The controller that we will design consists of a parameter-dependent linear system with unity feedback
(see Fig. 5.2). This, while incurring no loss of generality, will be important in establishing LMI conditions
for the existence of a stabilizing gain-scheduled controller. Thus, the gain-scheduled controller K is described
by the state equations

A(0) = diag(b:1 L, ..

2y = Arazrp -+ Bra,y+ Bra,v, u Crazk + Drayy ¥+ Diay,v,

w = Cra,Zk+ Dran ¥+ Dray, v = w, (5'21)

where zx(t) € R™, v € R% and w € R%.

> A(F)
————f—-——_——_—_ —-—— - - = — —— =
| Par |
| P ! |
| A | B, B. ) |

Op DPq DP"’
| y c, 0 0 ) u |
] |
| |
| |
I —r - - - - = - IC—I I
] |
I » Axa | Bra,  Bia, [
| Cka, Diayy,  Dragy, l
I > Cin, kAz  Dkag, I
I v |
| I l_, o — . m— a— e m— — —— — — o —— |_ pony |
L e e — 1

Figure 5.2: Gain-scheduled output feedback controller

All the state-space matrices in (5.21) are functions of the time-varying matrix A(8(t)); hence their

subscript A. (Their exact dependence on A will become clear later.) Then, with the notation

Bka, Bra,
Diay, Drass
Dias, Dras.,
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the state space equations governing the closed-loop system P are

L]0 ool ]
|7 ]-eo] L]0l ]
=0 so]l0)

where

a0 =5 o]+[7 % 8]9(9)[(%, éJ (5232
Ba)=[o ]+ ][] % 9(0)[(3 ﬂ (5:23b)
= 3]+[0 2 ! Qw)[cgy éi 5350
pao=[8 5,]+[8 5, §Jmo]o o],

Next, we state two lemmas that play an important role in the subsequent development.

Lemma 5.3.1 (Elimination Lemma [BEFB94, GA94]) Given G € R™*", U € R"*?, V € R™*¢,
there exists a matriz Q € R?*? such that

G+UQVT +vQTUT >0

if and only if
UTGU, >0 and VFGV, >0,

where Uy and V) are the orthogonal complements of U and V respectively.

Lemma 5.3.2 (Completion Lemma [Pac94]) Let 0 < XT = X € R*™™™ and 0 < Y = YT € R**".
There exist Xo € R™™", Xa € R™*", Yo € R**" and Y3 € R™*" such that

-1
X X, X X, _ Y Y,
[X%" X3]>0 and [Xg" X3] _[YZT Yg]
if and only of
[i %]ZO and rank[i %]§n+’r.

5.3.1 Gain-scheduled controller design using quadratic Lyapunov function

We first design quadratically stabilizing gain-scheduled output feedback controllers by applying Corollary 2.
The following theorem provides a sufficient condition for the existence of a full order robustly stabilizing
gain-scheduled controller.

Theorem 8 Consider the closed-loop system in Fig. 5.2. Let np = n. Then, given v > 0, there exist
P=PT >0 and M = MT >0 such that for every 8(t) € yO, there exists Q(0(t)) satisfying

T T
ALP+PAq+CIMCy PBa+ CIMD } <0, (5.24)

BTP—I—D MCcl —M+D M D
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if and only if there exist R € R"*"™ and S € R**", L € R and J € R**? such that the following matriz
inequalities hold:

.7 [ AR+ RAT  RCT | vBgid ¢
Ne 9 C,R ~J | 9Dyt || RS ] <0,
L wWBL, D | -7 b
[ ATS +SA  4SB CTL 7 (5:252)
r T + ")/ q,z' -
s 9 yBT.S  -L ’ A ] <0,
J | LG, YLDy | -L ]*
S I L I .
[I R]>0, [I JJ>0, i=1,...,r (5.25b)
where By i = BgA;j, Dpgi = Dpgf\;, Aj, i =1,...,7 are the vertices of the polytope A, Nr and Ng are

matrices whose columns comprise the bases of the null spaces of [BI DT,] and [Cy 0] respectively.

Proof: Since § € v®, we have A € yA. Using Schur complements, observe that condition (5.24) is
equivalent to

BTP  -M DI
Ca Dg —-MT1

ALP+PAy PBy CF
<0 (5.26)

N R ) A PR AR N

0 I 00
0 B, 0 0 0 I
B:[ . }, 'Dpuz[ ], C=]1Cy 0}, Dy=10 0.
I 0 0 0 Dpu O 0 0 I 0

where By(0) = B,A(8) and Dpe(6) = Dp,A(6) affinely depend on #. Then using (5.23), inequality (5.26)
can be written as

X +UTQO)V +vIeTu <o, (5.27)
where

AEP-}-PAO PBy Cg
X = BfP -M D |, U=[B™P 0 DI, ]andV=[C Dy 0].
Co Dy —-M-1

Partition P, P~', M and M~! as

P:[S *], P‘I:[R *], M:[* *]’ M‘lz[* *].
*  * * % * L * J

Using this partitioning of P and M and the elimination Lemma and the completion Lemma, it is straight
forward to verify that inequality (5.27) is feasible for some Q(A(#)) if and only if

<7 [ AR+ RAT RCZ (BsA) ]
Ne 9 C,R ~7 (DypgA)J [1\6’* ?]<0,
1L I(B AT J(Dpe AT -7
(5.28a)
- [ ATS+SA  S(B,A) CEL 7
A([)S ? (BqA)TS —L (quA)TL [ 1\65 ? ] <0,
} LGy L(DpeA) l —L i
S I L I
[$ 1]sn [4 1] 50 o
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Note that the left hand sides of (5.28a) are affine in A. Therefore conditions (5.28a) hold if and only if
they hold for each vertex of YA. Finally it is easily argued that if (5.28) is feasible with nonstrict inequality,
it is also feasible with strict inequality. Thus we get condition (5.25). o

The main implication of Theorem 8 is that we now have a sufficient condition for the existence of a
robustly stabilizing gain-scheduled controller for system (5.1). In contrast with the gain-scheduled controller
designed in [AG95] and [EGS96], there are no structure constraints on M in Theorem 8; consequently, even in
the case when @ is a hypercube, our design is at most as conservative as the design using structured scalings.
Of course, as with the stability analysis, our design can also directly take advantage of the knowledge of
more accurate polytopic covers for the uncertainties.

Remark 5.3.1 Note that since the gain-scheduled controller depends on the uncertain parameters 0(t), the
LFR degree of the closed loop system is always greater than one. Thus we may not use vertez scaling
(Corollary 8) in designing gain-scheduled controllers. However for general output feedback synthesis problems
(see [ACGBY3]), we may still apply Corollary 3 to design output feedback controllers that guarantee larger
closed-loop stability margins.

A direct consequence of Theorem 8 is that a lower bound of the robust stabilizability margin py, can be
computed by solving the following Generalized Eigenvalue Minimization Problem (GEVP).

Minimize: K
Subject to:
- .7 [ AR+ RAT RC}?w B,:J
M 9 C,R  —X | Dpoid [ Ne 9 ] <0,
- = | JBqT:z JDZ’Q,Z. I —X
- [ ATS+SA SBy; CTL (5.29)
s 9 BT,S  -Y ‘ Dt L [ s 9 ] <0,
. LG, LDy ] -Y
S I] L I .
[I R_>0’ [I J]>0, i=1,...,r

X < &J, Y < kL

where By; = BA;, Dygi = DpgA;, R, S, L, and J are optimization variables, pm = 1/ is the robustly
stabilizability margin.

For a given v > 0, we have thus far only derived conditions for the existence of a quadratically stabilizing
gain-scheduled output feedback controller over y®. We now describe an algorithm for explicitly constructing
a family of gain-scheduled output feedback controllers that are guaranteed to stabilize the system over yO.

Step 1. Design controllers corresponding to each verter of the polytope yA .
Let (R, S, L, J) be a feasible solution to (5.25). With S > R~!, define Pi, = (S — R7})'/? and
Q12 = —RPi2, and

_| S P2
Then,
_ R Q12
1— . .30b
e[ e ] 5309
Next, with My, = (L — J=1)}/2 and Ni3 = —J M3, define
_[ I Mb
M= [ My, L ] '
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Then,
-1 [ I-MEN,, NE
M —[ Nis J |

With P, M and M~! defined above, for each A;, i = 1,...,r, the LMI (5.27) must be feasible
from the equivalence between (5.27) and (5.25). By solving the LMI feasibility problem (5.27) for
Qa, = Q(A(8)), we get a controller Qa; corresponding to the vertex A;.

Step 2. Design the gain-scheduled controller.
For any A(6(t)) € YA, solve the set of linear equations A(6(t)) = >°I_; @i(t)yA; to get ;(t). Define

Qo(2)) = E a;i(t)7Qa, . (5.31)

Then, (5.31) gives the state space matrices of a gain-scheduled controller that is guaranteed to quadrat-
ically stabilize the system.

Note that in controller (5.31), every system matrix of the controller in (5.22) is “scheduled”, that is,
depends on 6(t) (unlike with [AGB95, EGS96] where only By,, D,, and Dy,, are scheduled).

5.3.2 Gain-scheduled controller design using parameter-dependent Lyapunov
functions

For affinely parameter-dependent systems, the gain-scheduled controlier design based on a single quadratic
Lyapunov function can be improved by using parameter-dependent Lyapunov functions [AA98]. In this sec-
tion, we consider the use of parameter-dependent Lyapunov functions for designing gain-scheduled controllers
for the more general parameter-dependent systems described by the LFR framework.

Theorem 9 Consider the parameter-dependent system with a full order output feedback controllerin Fig. 5.2,
i.e., , ny = n. Then the parameter-dependent system is robustly stabilizable for all 0 satisfying (6,6) € @ x ®
if there ezist R; € R™*™ and S; e R™*™, L € R¥? and J € R**? such that the following matriz inequalities

hold:
T Eu E12 E13
[ A(’)R H [ ET, —J | En J [ 1\6’* ? ] <0, (5.322)
Efy E3 | —J
T Fn F12 F13
[Aés ?] [Ff’; _X ‘an][]\és ?]<0, (5.32b)
Ffy Fi | -L
S I L I
[I RJ>0, [I J}>0, (5.32¢)
L A(B(t)X
[ XA(2)) X > 0, (5.32d)
where

R=Ro+) 6i(t)R;, S=So+) 6;(t)S;,

j=1 j=1
E1y = AR+ RAT = ) 0;(t)R;,
ji=1
E12 = RCZ, E13 = Bq(g)(], E23 = qu(g)J,

F11 . ATS+ SA+ Zéj(t)ij
Jj=1
Fiy =SBy, Fi3=CTL, Fp3=DIL.

By(0) = ByA(0(t)), Dpe(6) = DpA(6(t)), Nr and Ns are matrices whose columns comprise the bases of
the null spaces of [BL DJ,] and [Cy 0] respectively.
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Note that conditions (5.32) are linear matrix inequalities. Therefore we only need to check the feasibility
of these LMIs on the vertices A; and ®;. Moreover, when R; = 0 and S; =0, j = 1,..., m, conditions (5.32)
yield the quadratically stabilizing gain-scheduled controller synthesis condition (5.25); this corresponds to
the situation when the rate of variation of the uncertainty cannot be measured in real time or is unbounded.
Conditions (5.32) offer the potential of improved gain-scheduled controller design when information on the
rate of variation of the uncertainty is available. ‘

Proof: Condition .
L AB(t)X
| xatoey %

implies L > AXA. Multiplying the first inequality in (5.32b) on the left and right by diag(l, A, I), we get

>0

Ne 017 F11T Fis Fiz ] Ne 0
[05 1] Fl;, —L | F [05 I}<0, (5.33)
T
FL Py | -L

where Fyy = (so +) 8 (t)sj) B,(6) and Fhs = Dpy(6)T L. Therefore (5.32b) holds for all (6,0) € © x &6
i=1

if and only if (5.33) holds for all (4, ) € ® x ®. Using a similar argument as the one in the proof of

Theorem 8, it can be checked that

[ Aa(0)T P(6) + P(6)Aa(6) + Ca(8)T MCa(8) + P(8) P(8)Ba(6) + Ca(6)T M Dey(6) ] <o,

Bc,(e)TP(e) + Dcl(e)TMCd(a) —-M + Dcl(B)TMDcl(e)
where
PO =] _s 55y ETA ] s=s #3008, R=Fot 3 6O
and

I ML
M, L
Thus the system is robustly stable and P(f) defines parameter-dependent Lyapunov functions which

guarantee the stability. 0
We now present an algorithm for explicitly constructing a family of gain-scheduled output feedback

controllers that are guaranteed to stabilize the system.
Suppose that the synthesis conditions (5.32) are feasible for some matrix variables L, J, and R;,S;,

j=1,...,m.

M = [ ] >0, Mm’:(L—J-l)l/z, Nig = —J M.

Step 1. For a uncertainty measured in real time, (6,6) € ® x ®, construct P(6) and P(6)~1.

Let
S=50+> 6;()S;, R=Ro+ Yy 0;()R;.
j=1 i=1
Then m "
S:Zéj(t)Sj, RZZéj(t)Rj.
j=1 ji=1
Define
p— S —(S-RY)
| =(S-RY S—R! ’
and Mt
_ 12
W=l M
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where Mis = (L ~ J_l)l/2 and Ni3 = —J M. Thus

p-1— R R
| R (S—R“l)‘lS'R !
and

M_12[1~M{-”2N12 NE, ] >0

Nio J
Then . . .
P . ) S _ —'(S + R—IRR_I)
| =(S+R'RR™Y) S+RRR' |’
Since conditions (5.32) are feasible with L, J, and R;,S;, j = 1,...,m, it can be checked using the
Elimination Lemma 5.3.1 that

X(6,6)+UTQO)V +vTQ)TU <0, (5.34)

must be feasible for some (f), where

_ ATP+PA+P PBy, C7
X(6,0) = BTP -M DY |,
Co Dy —M-1

U=[B"P 0 DL ], V=[C Dy 0],

AO:[{} 8], Bow):[g qu(g)], Co-"-[(?,, 3]’ D°("):[g Dp?(e)]'

Step 2. Design the gain-scheduled controller.
Solve the LMI feasibility problem (5.34) for ©(6), which comprises the state-space matrices of the

gain-scheduled controller that stabilizes the system. Moreover, V(z,0) = 7 P(f)x is a parameter-
dependent Lyapunov function that guarantees the stability of the closed loop system.

Note that in the above algorithm, since P(6) is not an affine function on , solving (5.34) for a stabilizing
gain-scheduled controller is not as easy as designing a gain-scheduled quadratic stabilizing controller in
Section 5.3.1 (where Q(6) is simply a convex combination of the controllers Q; that each corresponds to
a vertex of A). In order to construct the gain-scheduled stabilizing controller using parameter-dependent
Lyapunov functions, we need to solve the LMI feasibility problem (5.34) in real time. One approach is to
solve LMI feasibility problem (5.34) numerically using an LMI solver [GN95, GDN95]; another approach,
which requires less on line computation time, is to find a feasible solution of (5.34) analytically (see [GA94]).

5.4 Numerical Examples
In Section 5.2 and Section 5.3, we observed that our approach is in general less conservative than structured

scaling methods. We now illustrate this point through numerical examples.

5.4.1 Improved robustness analysis

The objective of the first example is to demonstrate that our approach yields significantly better results for
robust stability analysis, as compared to the structured constant scaling methods. Consider a second order
differential equation with parametric uncertainties

Z+(1—r(t)cos¢ + r(t)sing + 0.5r(t)?sin 2¢)z + z = 0, (5.35)

where r(¢) is a bounded uncertain time-varying parameter and ¢ is a (uncertain) angle lying in the sector
[0,7/4]. A state-space realization of (5.35) is

I _ 0 -1 1
g9 | | 1 —14r(t)cosg —r(t)sing — 0.5r(t)sin 2¢ za |
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Note that the state matrix is not a real rational function on the uncertainties. However, with a simple
change of variables 6,(t) = r(t)cos¢ and 65(t) = r(t)sin¢, we obtain the following LFR with A(t) =

diag(6:(t), 62()):

(2] =Y 3] [z]+[0 0]
»o= [0 al[z]+[ 2 o] 53)
¢ = tel(t) gz(t)]p.

This LFR is always well-posed. Define
O = {(cos¢,sing) | ¢ € [0, 7/4]U [x, 57 /4]}.

This set is shown shaded in Fig. 5.3. Note that © is not a polytope; we therefore use its polytopic covers
in order to apply the results of Sections 5.2 and 5.3. The stability margin o, is the largest o such that the
stability of the system (5.36) can be guaranteed for any r € [0, o).

a(2)
]

61(t)

Figure 5.3: Uncertainty set (6;(¢), 62(¢)) and its polytopic cover
We will compare the following robust stability analysis methods, using as the basis for comparison the
robust stability margin that they can guarantee for system (5.36):

1. Hypercube cover, diagonal scaling [EBFB92, BEFBY4, DPZ91]. This is equivalent to covering © by a
rectangle EFGH E (dotted line).

2. Polytopic ccver, unstructured scaling (Corollary 2) This can be interpreted as covering @ by the
polytope ABCDA (solid line).

3. More accurate polytopic cover, unstructured scaling (Corollary 2). This can be interpreted as covering
O by the polytope AEICGJA (dashed line).

4. Vertex scaling (Corollary 3). Note that the LFR degree of system (5.36) is one, and therefore Corol-
lary 3 can be applied with both polytopic covers ABCDA and AEICGJ A for ©.

In this example, the eract stability margin turns out to be one. The lower bounds on the robust stability
margin computed? using the four approaches described above are given in Table 5.1. The results illustrate

*The actual calculation was performed by reformulating the lower bound calculation problem as a GEVP; see [BW9sg].
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the observation that for linear systems affected by time-varying parameters, the approach described in this
chapter offers significant improvement for robustness analysis over the traditional structured scaling methods.

[ Polytope | No. of LMIs in (5.11) | Constant scaling | Variable scaling |

EFGHE 1 0.4874 —
ABCDA 2 0.8082 1.0000
AEICGJA 3 0.9024 1.0000

Table 5.1: A comparison of the stability analysis by using structured scaling and unstructured scalings

5.4.2 Improved gain-scheduled controller synthesis

We have seen in Section 5.4.1 that our approach offers significant improvement over conventional structured
scaling techniques for robustness analysis. We now demonstrate that similar improvements accrue with
gain-scheduled controller synthesis as well.

Consider the system in Example 1 with an additional control input v and a measured output y. The
linear fractional representation of the system is

(2] = [ afln ]y e[ ]e

(5.37)
y = [1 1] [ 2 ]
[ 01(t)

v = 02(t) ]p'

Table 5.2 shows a comparison of the performance of different synthesis methods, based on the robust stabi-
lizability margin that they can guarantee using quadratic Lyapunov functions for system (5.37). It can be
seen that our approach using unstructured scalings yields significantly improved stabilizability margin than
the design using structured scalings.

[ Type of scaling | Polytope | No. of LMIs in (5.25a) | Constant scaling ||

Diagonal EFGHE 2 0.9985
Unstructured ABCDA 4 1.3646
Unstructured AFEICGJA 6 1.8609

Table 5.2: A comparison of gain-scheduled controller synthesis by using structured scaling and unstructured
scalings

5.4.3 Improved stability analysis with parameter dependent Lyapunov function

In this example, we show that the robust stability criterion by using parameter-dependent Lyapunov functions
(Corollary 4) is strictly less conservative than the quadratic stability criterion (Corollary 2).
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Consider the system:
g1] [0 -1][a ], [ -L1447 —2.2358
go |11 =1 2 2.5930 1.7060 | &

_[ Loa6 23899 1[a ] [ 0 0 (5.38)
P=1 _05656 —3.3902 || z, -1 0|9

q = Ap,

where A = diag(6:(t),02(t)), 61(t) = r(t) cos ¢ and 62(t) = r(t)sin ¢, ¢ is an uncertain parameter and lies
in the set [0, 7/4]. r(¢) is a bounded tlme—varylng uncertain parameter and satisfies 7(¢) € [0, 7]. The rate of
variation of r(¢) is also bounded by k, i.e., , |#(t)| < k. With different k, Fig. 5.4 shows the lower bounds of r,
under which the robust stability of the system can be guaranteed by using parameter-dependent Lyapunov
functions. The results show that the information of the bounds on the rate of variation of the uncertainties
can be incorporated in the robustness analysis to reduce the conservatism.

Similarly, the gain-scheduled controller design using parameter dependent Lyapunov functions is also less
conservative than the gain-scheduled controller design using a single quadratic Lyapunov function. However,
the improvement comes with the cost of a larger number of LMIs and optimization variables.

0.106 T T T L i i 3 T T

——O—— Using parameter-dependent Lyapunov functions
= == == Using a quadratic Lyapunov function

0.104

0.102

0.1

0.098

0.096

Robust stability margin

0.094

0.092

0.09 L L
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Bounds on the variation of the uncertainty
Figure 5.4: Robust stability analysis of system (5.38) with different bounds on the rate of variation of the

uncertainty

5.4.4 Robust stability analysis of a nonlinear system

In this example, we show that the approach we proposed in this chapter can also be applied to solve the
stability analysis problems of nonlinear systems with real rational nonlinearities. Consider an autonomous

i: _2 _ 3.2x,7o 142.2x5 x
[.*}=[ Gzl =9 -lé;fzumH ] (5.39)

Z2 T=z)(1-%2) T Z2

nonlinear system
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The linear fractional representation of this second order nonlinear system is
Z; -2 1 Ty 0 3.2
[552] [ 0—10][z2]+[0 2.4]4’
_ -1 0 2 1 0 (5.40)
o= ]

q = Ap,

where A = diag(z;,z2) is the “uncertainty”. We study the local stability around the origin, with the
approach of [EGS96] by using a quadratic Lyapunov function. First, we assume that the states are bounded,
ie.,, |z;| <o, i =1,2. Then, with the following LMI condition

2 T
[aei

e; P ] >0, i=1,2, (5.41)

where P is from the quadratic Lyapunov function V(1) = 4T P+, which guarantees the robust stability of
system (5.40) when |z;] < g, i = 1,2, it can be shown that £p £ {z| T Pz < 1} is an invariant set (ellipsoid)
around the origin (see [EGS96] for details).

With a fixed o, the size of the invariant set £p can be maximized. Here with ¢ = 0.5, we maximize
the trace of P, which has the effect of maximizing the largest sum of the squared semi-axis lengths of the
invariant ellipsoid Ep.

There are several methods to search for the quadratic Lyapunov function V() = %7 P3. Our conditions
from Theorem 7 make use of unstructured scalings and is guaranteed less conservative than the conventional
method using diagonal scalings. In Table 5.3, we list the largest traces of P, which can be guaranteed by
conventional method using diagonal scalings, Corollary 2, and Corollary 3 respectively.

(| Quadratic stability criterion | Largest Tr(P) ||
Conventional method 0.1249
Corollary 2 0.4994
Corollary 3 0.4996

Table 5.3: Comparison of the largest invariant sets guaranteed by Theorem 7 and by conventional method
using diagonal scalings

5.4.5 Stabilizing nonlinear systems using gain-scheduled approach

In this example, we show that our approach can be applied to the design of output feedback controllers for
parameter-dependent nonlinear systems with real rational nonlinearities.
Consider the following nonlinear system:

BEESIARE FNESE

0 —10 | | =, 4.8928 5.5663 5.5731
[ 77256 7.3275 | [ @ Lo
P = | 80556 6.9718 || =, 11 ]®
(5.42)
—_ z
y = [ 3.9401 12.8006][3:2]
- I 0
9 - 0 Z9 P

We design an output feedback controller (see [EGS96] for details) such that:
1. &p & {z| T Pz < 1} is an invariant set (ellipsoid) inside the box B, 2 {z| |x;] € 0.5, i = 1,2}, where
P defines a quadratic Lyapunov function which gives a guarantee for the local stability around the
origin.
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2. The upper bound on output peak ymax is minimized. Note that this reduirement can be enforced by

the optimization
Minimize: 2., Subject to: y2.. > cych, (5.43)

where R is the left upper block of P~1, defined in (5.30).

Note that there are several methods to search for the quadratic Lyapunov function corresponding to
&,. By combining conditions in Theorem 8 and LMIs (5.41) and (5.43), we can design an output feedback
controller with a guaranteed upper bound of output peak of 4.6465 when the initial condition zo € Ep.
By using conventional method with structured scalings [AG95, EGS96], however, the best upper bound is
7.8314. The improvement by using our method is up to 40%.

5.5 Conclusion

We have presented new algorithms for the stability analysis and gain-scheduled controller synthesis for
linear systems affected by parametric uncertainties. We have also established that these algorithms offer
significant improvement over existing methods. The analysis and synthesis conditions are in the form of
linear matrix inequalities; therefore, our algorithms can be very efficiently implemented numerically. The
techniques presented in this chapter can be applied to parameter-dependent nonlinear systems with real
rational nonlinearities, using the approach of [EGS96]. In addition, several of the techniques proposed in
this chapter can be extended to the solution of robust performance problems.

5.6 Proofs

Theorem 10 System (5.6) is quadratically stable if and only if there exists P = PT > 0 such that for any
uncertainty A € A which is defined in (5.7), the following condition holds

[ ATP+ PA-CIC, P(B,A)+ CT — CT(DpyA) ] . (5.44)
(BqA)TP +Cp — (quA)TCp (DpgA) + (DMA)T - (quA)T(qu A)-1 '

Moreover, if D = 0, condition (5.44) is equivalent to (5.14) with S; = —Q = 1.

Proof: The connection between (5.44) and (5.14) is very straight forward when D = 0. Therefore, we only
need to show condition (5.44) holds for general case.

Sufficiency
By Schur’s Complements Lemma, condition (5.44) is equivalent to for all A € A

P(A+ B,A(I - quA)‘le) +(A+ BqA(I - quA)_lcp)TP
+PB,A(I — DpgA)~Y(I — DpgA)"TATBTP < 0.

Therefore the quadratic stability of system (5.6) follows immediately. Also note that condition (5.44) implies
that system (5.6) is well posed.

Necessity
Suppose system (5.6) is quadratically stable. Then, there exists P = PT > 0 such that

L(A) = P(A+ B,A(I = DpyA) " Cp) + (A+ ByA(I = DypgA)T'C)TP <0, VAEA. (5.45)

Let
7 = sup ()‘maX(L(A)))»
AEA

where Amax denotes the largest eigenvalue. Obviously n < 0. We shall show that 7 < 0. This follows from
the fact that A is a compact set and Amax(-) is a continuous function. If n = 0, there must exists some
A € A such that Apax(L(A)) = n = 0, which contradicts the assumption (5.45).

Since the system is well posed (Otherwise, it can not be quadratically stable), det(/ — DpsA) # 0 for all
A € A. This implies (I — DpgA)(I — DpgA)T > 0 for all A € A. Following the same argument as before, we
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get infaea Amin((I = Dpg A)(I — DpgA)T) = 7 > 0, or equivalently |[(I — DpgA)~T|? < 1/7 forall A € A.

. Define P = ¢ P where
i 2
- All* < .
0<é< Amax(PBy BT P)u’ IAIF < #>0

It is easy to check that P is a feasible solution for inequality (5.44). Thus we showed that (5.44) is a necessary
condition for quadratic stability.
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Part 11

Gain-Scheduled Control of the ONR
UCAV
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Chapter 6

Gain-scheduled control of the ONR
UCAV

The dynamics of Unmanned Combat Air Vehicles (UCAVs) undergoing aggressive maneuvers are highly
nonlinear and time-varying. One approach towards modeling UCAVs involves linearizing the dynamics of
the UCAV around various points in the flight envelope. Then, the composite model of the UCAV can be given
as a linear parameter-dependent model, with the parameters being the flight conditions. A comprehensive
effort towards identifying such models is currently being undertaken at Texas A & M University.

We describe here research efforts towards a systematic design procedure for controller synthesis for the
linear parameter-dependent ONR, UCAV models. Traditional techniques for controller synthesis consist of
designing a single controller that is intended to function across varying flight conditions. These include
constant state-feedback, as well as the celebrated LQR/LQG and Hy, controllers. While these control
techniques can be sometimes proven to work (i.e., stabilize the system or provide acceptable performance),
they can be quite conservative, especially when the flight conditions vary considerably.

Gain-scheduled controller design offers the potential much more aggressive control design. The basic
idea is to synthesize a series of dynamic controllers, one for each linearized model of the UCAV around
a flight condition, and then ”"schedule” these controllers according to the actual flight condition. An ad
hoc implementation of such a scheme is not guaranteed to work; however, it is possible to develop a gain-
scheduling scheme, using Lyapunov functions, that is guaranteed to work across various flight regimes.

Another advantage of an approach based on Lyapunov functions is that it can be extended to handle
constraints other than mere stability. Stability requires the Lyapunov function to decrease along the tra-
jectories of the parameter-varying system. Additional constraints on the Lyapunov function can be used
to design controllers with guaranteed performance. Examples of performance measures are the energy in
the state vector, and peak values of signals of interest; in several instances, it is desirable that these perfor-
mance measures be small. And gain-scheduled controllers that minimize upper bounds on these performance
measures can be designed.

The technical approach behind gain-scheduled control was described in Part I of this report, especially
in Chapter 5. We now describe briefly some example problems in the control of the ONR UCAV that we

solved using our techniques.

The complete results of this study, along with the matlab codes are available at the web site
http://www.ece.purdue.edu/ ragu/onr/gs-contr.html

9 Joint work with Qing Su, School of Electrical and Computer Engineering, Purdue University.
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6.1 Example: Plant varies linearly with flight condition

‘ 6.1.1 Stability

The UCAVS linear models are based on the unmanned, V/STOL UCAV6 model. The online documentation

from the Texas A & M website

http://aero.tamu.edu/ucav/
provides more information on the model. The following table lists the inputs and states for the longitudinal

model.
Input | Units Description
d % | Elevator stick input
I t < -
nputs ds % Throttle input
dn deg Nozzle angle input
[ State | Units | Description |
u ft/s Velocity along z-axis of aircraft
States w ft/s Velocity along z-axis of aircraft

q deg/s Pitch rate
0 deg | Euler angle rotation of aircraft reference frame about inertial y-axis

We address the problem of designing a stabilizing controller that is ”scheduled” by the flight condition. The
design requirement is that with zero exogenous inputs, the states of the closed-loop system must converge
to zero, irrespective of the initial condition.
The flight condition V varies between 10 and 25 knots as shown in Figure 6.1. We assume that the system
. model varies linearly with the flight condition V between the two linear models of the system corresponding
to the flight conditions V = 10, and 25 knots (taken from the Texas A & M website).

FREN TR LY N

N S 3 3, i H . 3 b k
.y f 4 . = iy by b
o P3 A & » “© w A2 (53 b, R
[N

Figure 6.1: Flight condition variation.

Using the techniques outlined in Chapter 5, we designed a gain-scheduled controller to stabilize the
system. The plots of the state variables for the closed-loop system (with our gain-scheduled controller in

place), and the control inputs are shown in Figure 6.2.
We note that our techniques are guaranteed to stabilize the system, unlike some ad hoc gain-scheduling

i . methods.,
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Figure 6.2: The longitudinal states of the closed-loop system are shown on the left. The control inputs are
shown on the right.

6.1.2 Minimizing L; gain from disturbance to output

With the same flight condition profile as in Section 6.1.1, we introduce disturbances in all three control
inputs, as shown in Figure 6.3.

conore

Figure 6.3: Disturbances introduced at the control input.
We now consider the problem of designing a gain-scheduled controller that minimizes an upper bound

on the worst-case Ly gain from disturbance (introduced at the control inputs) to the state. The basic idea
here is to search for Lyapunov functions that satisfy the constraint

DV (1) < yu) () - 27 2(0), (6.1)

with the smallest p0551ble v, where w and z denote the disturbance input and output of interest respectxvely

“(See Example 2.5.1, and inequality (2 25) in Chapter 2.)

With this gain- scheduled controller in place, Figure 6.4 shows the various state trajectories correspondlng
to the disturbance input in Figure 6.3, as well as the various control inputs.
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Figure 6.4: The state trajectories with the gain-scheduled controller that minimizes the Ls gain from dis-
turbance to output are shown on the left. The control inputs are shown on the right.

6.1.3 Minimizing peak value of the first state-component

With the same flight condition profile as in Section 6.1.1, and with the same disturbances as in Section 6.1.2,
we now consider the problem of designing a gain-scheduled controller that minimizes an upper bound on
the worst-case peak value of the first component of the state. The basic idea here is to search for Lyapunov
functions that satisfy the constraint

d
V(1) <0, (6.2)

and use the invariant sets that arise to bound the state variables (cf. example 2.5.2 in Chapter 2).
With this gain-scheduled controller in place, Figure 6.5 shows the various state trajectories corresponding
to the disturbance input in Figure 6.3, as well as the various control inputs.
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Figure 6.5: The state trajectories with the gain-scheduled controller that minimizes the worst-case peak
value of the first state component are shown on the left. The control inputs are shown on the right.
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6.2 Other

example problems

We have performed a comprehensive study, employing:

o Different design objectives.
o Different UCAV models (taken from the Texas A & M database).

e Different flight condition variation scenarios.

Hierarchical description of problems studied

L I I S B SR T S )

*

o At the highest level, the problems are classified according to how the plant parameter vary
with the flight condition: linear and polynomial. Our techniques extend to the case when
the plant parameters are rational functions of the flight condition as well.

e At the next level, we have studied six models for the linear variation case:

— Longitudinal UCAV6 model.

— Lateral/directional UCAV6 model.
— Longitudinal VSTOL1 model.
Lateral/directional VSTOL1 model.
— Longitudinal VSTOL2 model.

— Lateral/directional VSTOL2 model.

For the polynomial variation case, we have only considered the longitudinal and lat-
eral/directional UCAV6 model.

e At the last level, for each scenario, we have studied the following problems:

— Single objective problems:

L, gain bound of 10000 from disturbance to output.
Minimize Ly gain from disturbance to output.
Minimize Lo gain from disturbance to first output.
Minimize Lo gain from disturbance to second output.
Minimize Lo gain from disturbance to third output.
Minimize L, gain from disturbance to fourth output.
Minimize peak value of the state Euclidean norm.
Minimize peak value of the first state component.
Minimize peak value of the second state component.
Minimize peak value of the third state component.
Minimize peak value of the fourth state component.

— Multi-objective problems:

L, gain bound of 10000 from disturbance to output + minimizing upper bound on
the peak value of the Euclidean norm of the state vector.

L, gain bound of 10000 from disturbance to output + minimizing upper bound on
the peak value of the first state component.

L; gain bound of 10000 from disturbance to output + minimizing upper bound on
the peak value of the second state component.

L, gain bound of 10000 from disturbance to output + minimizing upper bound on
the peak value of the third state component.

L gain bound of 10000 from disturbance to output <+ minimizing upper bound on
the peak value of the fourth state component. |
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Robust Estimation
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Chapter 7

Robust estimation for systems with
parametric uncertainties

We present an adaptive robust Kalman filtering algorithm that addresses estimation problems that
arise in linear time-varying systems with stochastic parametric uncertainties. The filter has the one-
step predictor-corrector structure and minimizes the mean square estimation error at each step, with
the minimization reduced to a convex optimization problem based on linear matrix inequalities. The
algorithm is shown to converge when the system is mean square stable and the state-space matrices
are time-invariant. A numerical example, consisting of equalizer design for a communication channel,
demonstrates that our algorithm offers considerable improvement in performance when compared to
standard Kalman filtering techniques.

7.1 Introduction
In this chapter, we consider the robust estimation problems for the uncertain system

z(k + 1) = Aa (k)z(k) + Ba(k)w(k), )
y(k) = Ca(k)z(k) + Da(k)w(k), z(k) = La(k). :

When system (7.1) contains mixed deterministic and stochastic uncertainties, we consider two problems
of optimal estimation. The first is the design of a filter that minimizes an upper bound on the worst-case
mean energy gain (MEG) between the noise affecting the system and the estimation error. The second is
the design of a filter that minimizes an upper bound on the worst-case asymptotic mean square estimation
error (MSEE) when the plant is driven by a white noise process. We present filtering algorithms that solve
each of these problems, with the filter parameters determined via convex optimization based on linear matrix
inequalities. We demonstrate the performance of these robust algorithms on numerical examples consisting
of the design of equalizers for communication channels.

When system (7.1) is time-varying and contains stochastic parametric uncertainties (See (7.29)), we
present an adaptive robust Kalman filtering algorithm. The filter has the one-step predictor-corrector struc-
ture and minimizes the mean square estimation error at each step, with the minimization reduced to a
convex optimization problem based on linear matrix inequalities. The algorithm is shown to converge when
the system is mean square stable and the state-space matrices are time-invariant. A numerical example,
consisting of adaptive equalizer design for a communication channel, demonstrates that our algorithm offers
considerable improvement in performance when compared to standard adaptive Kalman filtering techniques.

The organization of this chapter is as follows. In Section 7.2, we propose linear time-invariant robust
MMEG and MMSE estimators for uncertain systems containing mixed deterministic and stochastic uncer-
tainties. In Section 7.3, we propose an adaptive Kalman filtering algorithm for linear time-varying systems
with stochastic parametric uncertainties.

. 9Joint work with Fan Wang, Ph.D., School of Eiec'triczil and Computer Engintering, Purdue University.
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7.2 Robust estimators for systems with mixed deterministic and
stochastic uncertainties

In this section, we consider a robust estimation setting where both deterministic and stochastic uncertainties
are present. For such systems (see Fig. 7.3), we design:

A robust MMEG filter, i.e., , one that minimizes an upper bound on the largest value (over all possi-
ble values of the deterministic uncertainties and all possible realizations of the mean energy bounded
noise input w) of the mean energy gain (with the expectation taken over the statistics of the stochastic
uncertainties) from the noise input w to the estimation error e.

A robust MMSE filter, i.e., , one that minimizes an upper bound on the largest value (over all possible
values of the deterministic uncertainties) of the asymptotic mean square value (with the expectation
taken over the statistics of the stochastic uncertainties and the white noise input w) of the estimation
error e.

In each case, the robust filter design problem is reduced to a convex optimization problem based on linear
matrix inequalities.

7.2.1 Preliminaries

Consider the parametric uncertain system

a(k +1) = Aa(B)a(k) + Ba (E)u ) (1.28)
(k) = Ca(R)a(k) + Da(b)u(k),  =(k) = Le(k), |

where

Aa(k) = Ao+ > AJCH(k) + > A¢i(k), Ba(k)=Bo+ Y Bi¢i(k)+Y_ Bi¢i(k),
t=1 t=1

j=1 j:l
n m n m (7.2b)
Ca(k) = Co+ > CHE(k)+ D Ci¢i(k), Da(k)= Do+ Di¢i(k)+ D Di¢i(k).
t=1 j=1 t=1 j=1

The system has mixed deterministic and stochastic uncertainties. It is said to be mean square stable if with
w(k) =0 and for all k € Z,, we have

Jim B [z(k)z(k)T] =0,

regardless of the initial condition z(0).
Let

] i=1,...,2" (7.3)

be the vertices of the polytope

n n
Ao+ Y AJG! Bo+) B¢
Q= t=1 t=1 |th1| <1

Co+» CH} Do+ D¢l
t=1 t=1

The following lemma gives a sufficient condition for the mean square stability of system (7.2). This lemma
is an extension of the corresponding result for systems with stochastic parametric uncertainties in [BEFB94,
Chapter 9] to systems with mixed deterministic and stochastic uncertainties.

Lemma 7.2.1 System (7.2) is mean square stable if there exists a matriz @@ > 0 such that

ATQAi - Q+ ) (ANTQA) <0, i=1,..52" . o (14) -

i=1

Moreover, the quadratic Lyapunov function V(z(k)) = E [2(k)T Qu(k)] satisfies V(z(k)) \, 0 as k — oo.
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Proof: Let X(k) = E [z(k)Tz(k)] and A(k) = Ao + Y 1=y Af¢i(k). Suppose that there exists a matrix
@ > 0 such that condition (7.4) holds. By convexity, condition (7.4) implies that

AR)TQA(K) — Q + i(Aj)TQ(Aj-) <0, k=0,1,2,... (7.5)
izl
With w(k) = 0,k = 0,1,..., the correlation of the states of system (7.2) satisfies the recursion
X(k+1) = A(R)X (k) A(K)T + iA;-X(k)(A;)T.
iz
Define a Lyapunov function V(z(k)) = E [z(k)T Qz(k)]. If X(k) # 0, then V(z(k)) > 0, and
V(z(k+ 1)) — V(2(k)) = Tr(X (k) (A(k)TQA(k) -Q+ i(Ai)TQ(AS)> )-

From (7.5), we get V(z(k + 1)) — V(z(k)) < 0. On the other hand,
V(z(k+1)) - V(z(k) = Te((X(k + 1) = X(K))Q).

Since @ > 0, we get X(k +1) < X (k). Thus X (k) is monotonically decreasing as k — oco. Moreover, it can

be argued that X(k + 1) < nX (k) with 5 € [0,1). Therefore we have lim;_.., X(k) = 0. m]
Lemma 7.2.1 gives a sufficient condition for the mean square stability of system (7.2). If there is no
deterministic uncertainty, i.e., , §¢(k) = 0,i=1,...,n,k=0,1,..., then condition (7.4) is also necessary for

the system to be mean square stable [BEFB94, pp. 136-137]. However, in more general cases, condition (7.4)
is not necessary since it requires the use of a single quadratic Lyapunov function to prove the mean square
stability of system (7.2) for all possible choices of state matrices A(k). If there exists a matrix @ > 0 such
that condition (7.4) holds, system (7.2) is said to be mean square quadratically stable.

Our objective here is to design an LTI signal estimator

:l:f(k-i-l):Af:C_f(k)-i-ny(k), f(k) :Cfmf(k), (76)

where z;(k) € R"=1*"=s.
We may write down a state space realization for the interconnection in Fig. 7.3:

[ e ] B [ Biath A, ] [ 50 ] * [ 5, Da () ]w(k),

(7.7)
ek)=[ L —Cy | [ ;f((kk)) ] .

We will focus on two design objectives:

¢ Robust MMEG filter design
With 2(0) = 0 almost surely, we wish to determine the estimator parameters {Ay, By, Cy} to solve the
following problem:
Minimize: Yoo

o0
Subject to: ZE o)) < 1,
k=0
[e o]
ST Elle(k)P] < Yoo
k=0
_ This has the interpretation of minimizing an upper bound on the largest value (over all possible values
of thé deterministic uncertainties and all possible realizations of mean energy bounded noise input w)’

of the mean energy gain (with the expectation taken over the statistics of the stochastic uncertainties)
from the noise input w to the estimation error e.
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¢ Robust MMSE filter design
We wish to determine the estimator parameters {Ay, By, Cy} to solve the following problem:

Minimize: Y2
Subject to: AN s.t. E [|le(k)||?] < 72,Yk > N,

where w is zero-mean unit variance white noise. This has the interpretation of minimizing an upper
bound on the largest (over all possible values of the deterministic uncertainties) asymptotic mean
square value (with the expectation taken over the statistics of the stochastic uncertainties and the
white noise input w) of the estimation error e.

7.2.2 Robust MMEG filter design

In this section, we consider the robust MMEG filter design problem. For system (7.2), with z(0) = 0 almost
surely, the quantity

sup 3" E [|ly(k)|f?] (7.8)
oo k=0
{ZE [lw(k)|?] < w}
k=0

will be referred to as the worst-case mean energy gain (worst-case MEG). The following lemma gives a
sufficient condition for the worst-case MEG to be less than a level 7o, .

Lemma 7.2.2 The worst-case MEG of system (7.2) is less than v if there ezists a matriz P > 0 such that

P AP B 0
PAT P 0 PCT
B 0 9yl DF
0 GP D I

>0, i=1,...,2%, (7.9)

where P = diagP,---, P and
A= [(Ai)T’ (Ai)T’ ° "(A:n)T]T: B; = [(Bi)T7 (Bi,)T> M) (B:n)T]T’

Ci=[(C)T,(CNT, - (CRTIT, D= (D))", (D)7, (D).

Proof: First, let us define a Lyapunov function V(2(k)) = E [2(k)T Qz(k)] with @ > 0. If
V(z(k+ 1)) = V(2(k)) < 1 E [Jlw(k)II?] = E {lly(R)II?], (7.10)

we then have

Y EYEIP] < 70 Y B [llw(®)]] -
k=0 k=0

Following the same argument as in the proof of Lemma 7.2.1, it can be checked that condition (7.10) is
equivalent to LMI condition

Q 0 A; B; T Q 0 A B;
[0 7001]_[(,2 Di] [o I][(}i pi]>0, (7.11)

where Q@ = diagQ,---,Q. With a change of variable P = Q~!, and standard matrix manipulations, it
follows that condition (7.11) is equivalent to (7.9). O

The upper bound on the worst-case MEG given by (7.9) can be conservative in general. However, if
there exist no deterministic uncertainties, it turns out that the upper bound is tight, i.e., it equals the worst-

case MEG. We also note that if the worst-case MEG is bounded, then the system must be mean square

quadratically stable.- This simply follows from the fact that (7.9) implies that

[P A;P

>0, i=1,...,2%,
PAT P]
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which is equivalent to condition (7.4) with @ = P~ 1.

We are now ready to state our main result on the robust MMEG filtering, that a robust MMEG filter
for system (7.2) can be designed by solving a set of linear matrix inequalities.

Theorem 11 For the uncertain system (7.2), there exists a full order LTI filter (7.6) such that the worst-
case MEG from the input noise w to the estimation error e is less than Yo if there exist Z = 2T Yy =

YT, H € R*=*X"= F € R™*"v, qnd G € R"**"= such that

Mq{l Miag Mz; 0
M12,i Z 0 M24 . n
M&i 0 ool 0 >0, ¢=1,...,2", (7.12)
0 ML, 0 I
where L .
Z f,0 £,0
A Bj,1
My = , M= : y Mizi= : )
? Af,m Bf,m
LT - GT [ Z Z
M24 t [ LT ] ) Z= z Y ] 3
(7.13)
A = ZA; ZA; — Z B;
0T | YA, +FC;+ H YA +FC; |’ [0~ | ' YB;+FD; |’

ZA3 Z43

ZBs ]

, — J . —
Ari = [ YA+ FC: Y AS+FCS ] Bri = [ YBS + F DS

If there is no deterministic uncertainty, the smallest yoo such that (7.12) holds is the ezact value of MEG.
Proof: The central part of the proof is a change-of-variable technique due to [GBG98]. From Lemma 7.2.2,

we have

STE (e /Y E [llw®)IP] < 7o
k=0 : k=0

if there exists a matrix P > 0 such that

P AP B 0

PAT P 0 PCT
BT 0 ool 0 >0, i=1,.
0 C;P 0 I
where _ _
A; 0 [ By ]
B;C; A; B; D;
i 0 1
A= | BC 0 | B =| BDi |, ¢=
Al 0 B;,
BiCy 0 L By Dy, |
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where X,Y € R"*=*"= [,V € R"*"s. According to the matrix completion lemma (see for exam-
ple [Pac94]), by requiring n;, = n., such a decomposition is feasible for some fixed X and Y if and only if

X and Y satisfy X >Y~! > 0.
Define new variables
H=VA;UTX"', F=VB;, G=CUTX!, (7.16)
and Z = X~1. Note that we may always require V being nonsingular in (7.15). If V is singular, we
may add some perturbations on P to enforce this requirement. Multiplying by diag7T,..-,TT,I,1 and
diagT,---,T,I,I from both sides of (7.14), where

zZ Y
r=[T ]

we get the linear matrix inequality (7.12). Since T is nonsingular, (7.12) and (7.14) are equivalent. By
Schur’s complement lemma, the condition X > Y~! > 0 is implied by the LMI (7.12).

If there is no deterministic uncertainties, the set of uncertainties {2 becomes a fixed point. According to
the bounded real lemma for discrete time systems, the second part of the theorem is proved immediately.

This completes the proof. (]
Condition (7.12) is sufficient for the existence of an LTI filter such that the worst-case MEG from w to
e of system (7.2) is less than 7. By minimizing v, we can design an optimal robust MMEG filter. This

becomes the following semidefinite programming problem ([VB96]):
Minimize: 74, Subject to: (7.12). (7.17)

We summarize the various steps comprising the construction of a robust MMEG filter using the feasible

solution of LMI (7.12).
Robust MMEG Filtering Algorithm

1. Solve the semidefinite programming problem (7.17) and find the optimal values of Z,Y, H, F, and G.
2. Define V = (Y — Z)Y/2 and U = —Z~'V. Note that (7.12) implies Y > Z and that V is nonsingular.

3. Construct the state-space matrices of the optimal MMEG estimator
Ay Byl _[vt o H F -v-1 0
[C, o]—[o I|][G o o I (7.18)
We also note that F [z(k)Qz(k)], where

9= [ (Y _YZ)I/2 v —IZ)I/2 } ’

is a quadratic Lyapunov function that guarantees that irrespective of (4, we have

STElle®N*] /Y E [lw®)l?] < Yoo
k=0

k=0

7.2.3 Robust asymptotic MMSE filter

Suppose the input w is a zero-mean white noise process, and satisfies the condition £ [w(i)w(j)T] = 6(i—j)I.
We now consider the problem of designing a linear time invariant filter (7.6) that minimizes an upper bound
on the largest (over all possible values of the deterministic uncertainties) asymptotic mean square value (with
the expectation taken over the statistics of the stochastic uncertainties and the white noise input w) of the

estimation error e:
Minimize: 72,
o o o (7.19)
Subject to: IN s.t. E [|le(k)||?] < vz fork > N.

We begin with the following lemma.
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Lemma 7.2.3 Consider system (7.2). Suppose there exists a matriz P > O such that fori=1,...,2",

A:PAT — P+ B;BT + ) ((A)P(A)T + Bi(B)T) < 0. (7.20)
Jj=1
Then there exists N > 0 such that if k > N, then E [z(k)z(k)T] < P. Morecover, if P > E [z(0)z(0)T],
then E [x(k)r(k)T] < P for every k > 0.
Proof: Suppose that there exists P > 0 such that (7.20) holds. Let A(k) = Ao + > v, A¥¢#(k) and
B(k) = Bo+3 1., B&¢Z(k). Since {A(k), B(k)} € CoA;, B;,i=1,...,2", where A;, B; are defined in (7.3),
we have m
A(k)PA(E)" — P+ B(k)B(k)" + > (A3)P(A})T + B (B)" < —el,
ij=1

for some € > 0.
By (7.2), X (k) = E [z(k)z(k)T] satisfies the recursion

X(k+1) = AER)XR)ARYT + BEBET +3 (ALXE)AT + BIBT) .
j=1

We then have

P— X(k+1)> A(k)(P — X(k)AK)T + i AP — X(k))(A)T +el.

ji=1

It can be verified that P — X(k + 1) > M(k + 1) + eI, where

Mk +1) = A(k)M(E)AK)T + f:A;M(k)(A;)T,

j=1

and M(0) = P — X(0). Then, from Lemma 7.2.1, we have limy_.oo M(k) = 0. Therefore, there exists N

such that if ¥ > N, then P > X(k). To prove the second claim, suppose that P > X(0). It can be then

immediately verified that P > X (k) for £ > 0. o
Lemma 7.2.3 provides a solution to the asymptotic MMSE filtering problem.

Theorem 12 For the system (7.2), there exists a full order LTI filter (7.6) such that E [||e(k)||*] < v2 when
k is large enough if there exist Z =27, Y =YT, H e R**"?  F € R*"*"y and G € R"**"= such that

’I‘I'(W) S 72,
z z LT-GT Z  Mpy; Mia; (7.21)
Z Y LT >0, ML, My 0 >0, i=1,...,27,
L-G L W ML, 0 I
where
zZ
M, = , Mypi=[ Ay A o Apm ],
zZ
Migi=[ By Bri -+ Bim |,

with 2, Ab o, Agr, .., Apm, Bio, B, ..., Bym defined in (7.13).

Proof: The proof of Theorem 12 is similar to that of Theorem 11.
First, from Lemma 7.2.3, there exists a filter (7.6) such that E [||e(k)||?] < 2 when k is large enough, if

e P AP B -
Te(W)<7y, [L -C ]P[ ot ] < W, PAT P 0 | >0, (7.22)
/ B 0 I
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where P = diagP,---, P, and

A = A; 0 A0 e A, 0
YT | BsC; Ay B;C; 0 B;C;, 0 [’
and B
Bi=[B; B;D; | Bf B;Di | - |By ByDj ]
Using the same change-of-variable technique as in the proof of Theorem 11, the claim made in the theorem
follows. |

The following algorithm constructs a robust asymptotic MMSE filter for system (7.2) based on Theo-
rem 12.

Robust Asymptotic MMSE Filtering Algorithm

1. Solve the semidefinite programming problem

Minimize: Y2, -
(7.23)
Subject to: (7.21),
and find the optimal values of Z,Y, H, F, and G.
2. Define V=(Y-2)/?and U =~-Z"'V.
3. Construct the desired asymptotic MMSE filter by
A Byl _[Vvt oo H F -V-1 0
[c, 0]"[0 Ille o o I (7:24)

In addition, the Lyapunov function E [z(k)Qxz(k)], where

Q= [ Y —YZ)I/2 ¥ —IZ)I/2 ] ’

guarantees that E [|le(k)||*] < 2 when k is large enough.

Our robust steady state filtering algorithm extends the results in [GBG98, PM96] by incorporating
stochastic uncertainties in the system model. In addition, our filtering algorithm also has the advantage
that the so-called mixed performance filtering problem [KRB96] can be solved easily by combining the
corresponding LMI conditions. This will be illustrated with the numerical example that we describe next.

7.2.4 A numerical example: LTI equalizer for communication channels

We present an application of the robust MMEG and MMSE filtering techniques on designing a linear time
invariant equalizer for a communication channel. Consider the following IIR model of a communication
channel

2(k+1) = [ o o° ] z(k)+[ . ]s(k),

Lte®) (7.25)
y(k) = (k) + (5 + ¢(k))s(k) + 0.3w(k).

1+ ¢(k)

s(k) is the signal that is transmitted through the channel, and w is an additive measurement noise. The
channel model (7.25) is affected by time-varying uncertainties ¢ that are a combination of mixed deterministic
and stochastic parametric uncertainties (see for example, [MC88]). Specifically, {(k) = 0.1¢4(k) + 0.5¢,(k),
where: (4(k) is deterministic, satisfies [(4(k)] < 1 for all k, and can be measured in real-time; ¢, is a
zero-mean white noise process with a unit variance, and is independent of w and s.

For the channel (7.25), we will design an LTI equalizer to estimate the input signal s(k) (Fig. 7.1). We -
will allow ourselves a unit delay in equalization. '
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s(k) y(k)
—" Channel O Equalizer b

Figure 7.1: A communication channel with an equalizer

In order to apply the technique proposed in Sections 7.2.2 and 7.2.3 to equalize the channel (7.25), we
need to add one more state variable in (7.25). The unit delay in equalization adds another state variable,
resulting in the following description of the channel model.

T 01 05 10 0
k) = [0 00 L M e | 3]sk,
[0 0 10 0
[ 1+¢(k) 77
y(k) = ;igg’g 2(k) + 0.3w(k),
0

k) = [0 0 0 1]a(k)

If the signal s and the noise w are white noise processes, then the robust MMSE filtering algorithm
presented in Section 7.2.3 can be used to design an estimator that minimizes an upper bound of the worst-
case MSE of the estimation. We will impose an additional requirement on the estimator that it should also
satisfy a worst-case MEG requirement [KRB96); this can be thought as a safeguard against the possibility
that the statistics of w are not actually white. Specifically, with a prescribed mean energy gain bound of v
in effect, we will design an optimal steady state MMSE filter. The mixed performance filtering problem is:

minimize: Y2,
(7.26)
Subject to: (7.12),(7.13) and (7.21).

The dashed line in Fig. 7.2 shows the best bound on the asymptotic MMSE of the estimation with no
MEG constraint. This is simply the optimal answer from the semidefinite programming problem (7.23). The
solid line shows the optimal values of problem (7.26) as a function of the MEG constraint v.,. Corresponding
to every point on the tradeoff curve represented by the solid line, an LTI equalizer can be constructed that
is guaranteed to yield: (i) a worst-case MEG from w and s to e that is less than 7y ; and (ii) with unit
variance white noise processes w and s, an asymptotic worst-case MSE of the estimation that is less than

Y2

7.3 Robust adaptive Kalman filters for linear time-varying sys-
tems with stochastic parametric uncertainties

In this section, we consider the robust estimation problem for linear time-varying systems with stochastic
parametric uncertainties. For such systems, we present an adaptive robust Kalman filtering algorithm.

7.3.1 Preliminary

First, let us consider a linear time-varying system

2k +1) = A(k)z(k) + B(k)w(k), y(k) = C(k)z(k) + D(k)u(k), (7.27)
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Figure 7.2: Tradeoff between the MEG and MSE performance constraints

where k € Z,, z(k) € R" is the state, w(k) € R™ is the input noise, y(k) € R"v is the measured
output, and u(k) € R"* is the measurement noise. w and u are independent white noise random processes.
Equations (7.27) model systems which are affected by both actuator and sensor noises (w and u respectively).
A fundamental problem associated with such systems is that of state estimation, i.e., the “optimal” estimation
of the state z(k) from the noisy measurements {y(¢),i = 0,1, ..., k}; the corresponding state estimation is
denoted #(k|k). Such estimation problems arise in several applications in control, communications and signal
processing; see for example, [Men95, GKN*74] and the references therein.

Recursive! minimum mean square estimators (MMSE) form an important class of optimal state estimators
for system (7.27) [GKN*74, MC88, Pro95, OPG96]. They minimize the expected value of the square of the
estimation error, i.e., E [(z(k) — £(k|k))T (z(k) — £(k|k))], at each k. When the random processes w and u
are Gaussian, it turns out that the MMSE estimator is a linear filter whose coefficients can be determined by
solving a Riccati difference equation. (This is the celebrated Kalman filter.) When w and u are not Gaussian,
the Kalman filter yields the best linear MMSE estimator. An important (and desirable) property of the
Kalman filtering algorithm is that it converges when system (7.27) is stable and time-invariant [Koc79].

The Kalman filter consists of the following two parts:

1. One-step prediction update:
zs(k) = Ak — Das(k— 1)+ K(k = 1)(C(k = Dzs(k — 1) — y(k — 1)), (7.282)
2(klk — 1) = 24 (k), '
2. Filtered estimation update:

B(k|k) = #(k|k — 1) + F(k)(C(k)&(k|k — 1) — y(k)). (7.28b)

When the matrices A(k), B(k), C(k), and D(k) in (7.27) can be measured exactly, computing the
Kalman gains K(k ~ 1) and F(k) in (2) is equivalent to a quadratic optimization problem, one that can
be solved analytically [Koc79]. However, in many cases, thére exist uncertainties in model parameters

'n the following, we will use the terms “recursive” and “adaptive” interchangeably.
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and/or model structure because of errors from system identification routines or model reductions, see for
example [MC88, CC94, OPG96, KG96]. The performance of estimators designed without accounting for these
uncertainties can be severely degraded, and sometimes even unacceptable [Hay89]. Thus, robust Kalman
estimators must be designed with graceful performance degradation in the presence of modeling errors.

Another issue in Kalman filtering design is the initialization of the adaptive algorithm. The standard
adaptive Kalman filter is initialized in an ad hoc manner, leaving room for improvement in its transient
performance.

Here we consider MMSE estimation problems for linear time-varying systems affected by stochastic
uncertainties, with a view towards optimizing the “transient performance” of the estimation. The stochastic
uncertainties that we consider affect the system matrices; in addition, we assume that the correlation of the
state initial condition is known only to lie in a polytope?. For such systems, starting with the standard one-
step predictor-corrector filter structure (2), we develop a recursive estimation algorithm where at each step, an
upper bound of the worst-case value, over all possible initial values of the state correlation, of the mean square
of the estimation error, is minimized. The minimization is performed via numerical convex optimization over
Linear Matrix Inequalities (LMIs). As the system matrices are allowed to be time-varying, the algorithm can
readily incorporate measured deterministic parametric uncertainties. We demonstrate through an example
that the robust adaptive algorithm we develop leads to much improved transient behavior than the standard
adaptive Kalman filtering algorithm. We will see that as a by-product of our filtering algorithm, we obtain a
method to optimally initialize any recursive filtering algorithm, for instance the standard adaptive Kalman
filter. While convergence of the recursive algorithm that we present is not guaranteed in general—as with the
standard recursive Kalman filter for time-varying systems—we prove convergence in the steady state, when
applied towards estimation in a linear time-invariant system affected by stochastic uncertainties, provided
the uncertain system is mean square stable.

7.3.2 Problem setup

We consider the linear time-varying system

z(k +1) = Aa(k)z(k) + Ba(k)w(k), (7.29a)
y(k) = Ca(k)a(k) + Da(k)w(k), z(k) = L(k)x(k), '

where

Aa(k) = AR+ S ARG (R), Balk) = BR)+ 3 B (R (8)

= = (7.29b)
Ca(k) = C(k)+>_ Ci (k) (k), Da(k)= D(k)+ > _ D; (k)¢ (k),
i=1 i=1

which contains stochastic parametric uncertainties. Our objective is to design a worst-case optimal robust

adaptive filter of the form given in (2) with 2(k) = L(k)Z(klk) to estimate z(k) (see Fig. 7.3). (The case
L(k) = I corresponds to state estimation.) Specifically, since at each k the correlation of the state X (k)
depends on the correlation of the initial condition X (0), X (k) is uncertain when X (0) is uncertain. We wish
to find the optimal Kalman gains K(k — 1) and F(k) so as to minimize the maximum value of the mean
square of the estimation error, E [||z(k) — 2(k)||?], over all allowable values for X (k).

7.3.3 Robust adaptive Kalman filtering
We begin by rewriting equations (7.29) in an equivalent form (see for example [MC88, CC94]). Let

va(k) = ZA’ )i (k)a (B(k ZBs(m ) w(k)

2Qur framework is perhaps related closest with the one in [CC94], where the “uncertainties” affect the noise moments; a
game-theoretic argument is- used to establish the existence of an optimal recursive scheme. Another approach to solve this
problem is to include the uncertain parameters in the state vector and use Ertended Kalman Filtering (EKF) algorithm.
Extended Kalman filter is an approximate filter based on the first-order linearization of the nonlinear systernh and is in general
biased [Men95, Lju79]. The order of the filter depends on the number of uncertain parameters.

88




y
w - Signal z
Plant Z Estimator
e
Figure 7.3: Block diagram describing the estimation framework
and
m m
vy(k) = Y CF (k)G (k) (k) + (D(k) +Y Di(k)S (k)) w(k).
i=1 i=1
vy and vy are random processes. Since ¢f, 7 = 1,...,m and w are independent zero-mean white-noise

processes, v, and vy satisfy the following first order and second order moment conditions for every k € Z :

Efua (k)] =0, E[vy(k)] =0,

E [vs(k)vz(k)"] = B(k)B(k)" + i (A7 (k)X (k) A (k)T + B} (k) B (k)T) ,

i=1

E [v, (K)o, (k)"] = D(K)D(K)T + ) _ (C (k)X (K)C? (k) + D5 (k) D5 (k)T) ,

E [vs(k)vy (k)] = B(k)D(k)" + i (A ()X (k)C; (k)T + Bi (k)D; (k)7)
i=1
E [vy(k)ve(k)T] = D(k)B(k)T + i (C: (k)X (K)A; (k)T + Dj (k) B; (k)T) ,

where X (k) = E [z(k)z(k)T]. We also note that v, and v, are white-noise random processes, so that when
i # 7, E [v:(8)v=(§)T] = 0, E [vy(8)vy(3)T] = 0 and E [vz(i)vy(j)T] = 0. In addition, E [z(i)vz(5)T] = 0
and E [z(i)vy( j)T] = 0 for ¢ < j. Therefore, system (7.29) can be represented equivalently as

2(k + 1) = A(k)e(k) + B(k)v(k), (k) = C(k)z(k)+ D(k)v(k), z(k) = L(k)z(k), (7.30)
where
Bky=[ A{(k)X(K)Y? ... A%(k)X(k)Y? B(k) Bi(k) ... B(k) ]
and
D(k)=[ C3(k)X (k)2 ... Ca(k)X(k)'/* D(k) Di(k) ... Di(k)],

v is a zero-mean unit-variance white noise random process.
If the variance X(0) = E [z(0)z(0)7] is known, then it is easily verified that X (k) can be uniquely
determined by the following recursion:
X(k+1) = h(X (k) £ A(k)X (k)A(k)T + B(k)T B(k)

+ > (A3(k)X (k) A3 (k)T + Bj (k) B3 (k)T) .

j=1

(7.31)
However, X (0) is usually not known. In our setting, X (0) is assumed to lie in a polytope CoX;(0), ..., X;(0).
In this case, it can be easily shown that X (k) also lies in a polytope CoX;(k), ..., Xp(k), where

Xi(k +1) = A(k)Xi(k)A(R)T + B(k)B(k)T + f: (A3(k)X: (k) A3 (k)T + B (k) B3 (k)T) . (7.32) |
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If the system is mean square stable, the polytope converges to a fixed point as £ — co.

While (7.30) is similar to the setting for the standard recursive Kalman filtering problem, we note that
the noise v(k) is state-dependent and its second moment is uncertain. For this reason, the optimal linear
recursive MMSE filter design problem is considerably harder than the standard Kalman filtering problem,
which can be solved analytically [Koc79]. In particular, at each k, we are given:

(N1) Measurements of the system matrices A(k), B(k), C(k), D(k) and L(k).
(N2) Measurement of the noisy output y(k).
(N3) From (7.32), the vertices X1(k), ..., Xp(k) of the polytope where X (k) lies in.

We then need to solve the following minimax optimization problem for the optimal! Kalman gains K(k — 1)
and F(k) that determine the filter (2):

Minimize: E [||2(k) — 2(k)||?]
Subject to: Data (N1-N3), (7.33)
Equations (2) and (7.30).

Our approach towards the solution of Problem (7.33) is as follows: We will first define an upper bound
on the objective function, i.e., the mean square of the estimation error over all possible values for the
corresponding state correlation matrix X (k). We will then reformulate the problem of determining K (k — 1)
and F(k) so as to minimize this upper bound as a convex optimization problem.

We now proceed with deriving an upper bound on the objective function of Problem (7.33). Suppose

that at each k, we have available a matrix P(k — 1) with
P(k—1)> E [(z(k — 1) — &(k — 1k — 2))(z(k — 1) — &(k — 1|k — 2))7] .
Then,
E [(z(k) — &(klk — 1)(z(k) — &(k|k — 1))7]

< (Alk—1)4K(k—1)Ck - 1))P(k— 1)(A(k — 1) + K(k — 1)C(k — 1))T
+(B(k - 1)+ K(k - 1)D(k - 1))(B(k — 1) + K(k = 1)D(k — 1)) (7.34)
& f(P(k-1),X(k-1)). (7.35)

Then, we can obtain P(k) > E [(z(k) — #(k|k — 1))(z(k) — &(k|k — 1))T], simply by requiring that
F(P(k—=1),X(k—1)) < P(k), VX(k—1)€CoXy(k—-1),...,X,(k—1). (7.36)
Next, we have

E [(2(k) — &(k|k))(z(k) — &(k|k))]

(I + F(k)C(k)P(k)(I + F(k)C (k)T + (F (k) D(k))(F (k) D(k))" (7.37)

IN

>

9(F(k), X (k)). (7.38)
Then, for any matrix M (k) that satisfies

o(F(E), X(E)) < M(B), X () = h(X(k = 1)), (.39)
VX(k —1) € CoXi(k —1),..., X, (k = 1), "

we have

E [(2(k) = 2(k))(z(k) = 2(k))T] < L(k)M (k)L(k)T,
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which implies that Tr(L(k)M (k)L(k)T) is an upper bound of the objective function in (7.33).
We can now formulate the problem of determining K (k — 1) and F(k) so as to minimize an upper bound
on the the mean square of the estimation error over all possible values for the corresponding state correlation

matrix as follows:
Minimize: Tr(L(k)M (k)L(k)T)
(7.40)
Subject to: Conditions (7.36) and (7.39),

where P(k), M(k), K(k — 1) and F(k) are optimization variables. While this minimax problem has no
analytical solution in general, we establish via the following theorem that problem (7.40) is a convex op-
timization problem, which can be reduced to minimizing a linear objective subject with Linear Matrix
Inequality (LMI) constraints. This problem can be solved numerically very efficiently using standard algo-
rithms [NN94, GN95, GDN95, WB96], so that Theorem 13 provides for the efficient and effective numerical
solution of problem (7.40); for details on LMIs, we refer the reader to the book [BEFB94] and the references
therein.

Theorem 13 The minimaz problem (7.40) is equivalent to the following LMI optimization problem with
variables M(k) = M (k)T € R**", Q(k) = Q(k)T € R™*™, Y (k) € R**"v and F(k) € R"*"v,

Minimize: Tr(L(k)M(k)L(k)T)

Subject to:
[ Q(k) Tyo(k — 1) Tisi(k —1) ]
Tia(k— 1T Qk—1) 0 >0, Q(k)>0, (7.41)
Tisi(k —1)T 0 I
M(k) I+ F(k)C(k) F(k)Di(k)
[ I+ Ck)TF(k)T Q(k) 0 } >0, i=1,...,p,
Di(k)TF (k)T 0 I
where
Tia(k— 1) = Q(k)A(k — 1) + Y (k)C(k — 1),
Tiai(k — 1) = Q(k)Bi(k — 1) + Y (k) D;(k — 1).
(7.42)
Bi(k) = [ Aj(k)Xi(k)'/2 ... AL(K)X:i(k)? B(k) Bi(k) ... Bu(k)],
Di(k) = [ Ci(k)X:(k)Y/? ... ChL(k)X:i(k)/* D(k) Di(k) ... Di(k)],

X;(k) is defined in (7.32), P(k) = Q(k)*
P(k) > E [(a(k) — &(k|k — 1))(2(k) — &(k|k — 1))7]

for any X(k — 1) € CoXy(k—1),...,Xp(k—1), K(k — 1) = Q(k)~'Y(k) and F(k) are the optimal
Kalman gains, and the upper bound of the mean square of the estimation error E [||z(k')—z(k)|| ]
Tr(L(k)M(k)L(k)T).

Proof: Let X(k —1) = Y7 A Xi(k — 1), where X; € [0,1] and }7_, A; = 1. Since h(X(k — 1)) is a
linear function in X(k — 1), we have X (k) = YF_, X; X;(k) for the same set of A;, i =1,...,p. By Schur’s
complements lemma, condition (7.36) is equivalent to

P P(k) Tia(k—1) Tizi(k — 1)X;
x| Tak-1)T  Pk-1)71 0 >0, (7.43)
i=1 Tisi(k — )T X; 0 A}
and condition (7.39) is equivalent to
p M)y . T4£FECE) Fk)Dik)X: :
> { I+ C(k)"F(k)T P(k)} 0 >0, (7.44)
i=1 Di(k)T F (k)T X; 0 AP
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where X; = diagX;(k)!/?, .- JXi(R)Y20,-- - T
Defining new variables Q(k) = P(k)~! > 0 and Y (k) = Q(k)K(k — 1), it is straight forward to verify
that conditions (7.43) and (7.44) are equivalent to the LMI constraints in (7.41), concluding the proof. O
Theorem 13 paves the way for a recursive robust Kalman filtering algorithm. To start the algorithm,
we need to initialize Q(0), the process which we describe next. Let z;(0) = 0.2 Then we have Q(0) =
E [.'II(O):E(O)T]_l = X(0)~!, where X(0) € CoX1(0),...,X,(0). Using Theorem (13), @(1) can be computed
as an optimizer to the following problem:

Minimize: Tr(L(1)M(1)L(1)T)
Subject to:

Q(1)  Ti2(0) Tls,i(o)}
Ti2(0)7  X(0)7! 0 >0, Q(1)>0

. T
- Tias(0) ° ! (7.45)
[ M(1) I+F1)C(1) F(1)Di(1)
I+Cc()TFL)” Q1) 0 ]zo,
D;()T F(1)T 0 I

X(0) € CoX1(0),...,X,(0), i=1,...,p.

The matrix inequalities in (7.45) are not linear in all the variables, because the first LMI constraint has the
term X(0)~1. However, it is easily shown that (7.45) is equivalent to the LMI

Minimize: Tr(L(1)M(1)L(1)T)

Subject to:
Q(1) T12(0)X:(0) Ti3,:(0) jl

X;(0)TL(0) X;(0) 0 >0, Q(1)>0,

Ti3,:(0)T 0 I

- (7.46)
M(1) I+FQ1)C(1) F(1)Di(1)

I+Cc()TF()T Q(1) 0 ] >0,

Di(1)TF(1)T 0 I

X(0) € CoX;(0),...,Xp(0), i=1,...,p,
where Ti2(0), Ti3,i(0), D;(1) are defined in (7.42), and K(0) = Q(1)"'Y(1).

Remark 7.3.1 The solution to the optimization problem (7.45) can also be applied towards “optimally”
initializing other recursive algorithms, for instance the standard adaptive Kalman filtering algorithms, with
an attendant improvement in transient performance of such routines.

We now summarize the various steps in our robust adaptive Kalman filtering algorithm:
Step 1. Solve (7.46) to initialize Q(1), M(1), K(0) and F(1). Let k= 1.
Step 2. At time k + 1, let
Xi(k+1) = A(kn)in(k)A(k)T + B(k)B(k)T
+ ) (A3 X: (k) A3 (k)" + Bi(k)B; (K)T), i=1,...,p.

i=1

(7.47)

Step 3. Solve the eigenvalue minimization problems (7.41) for Q(k), M (k) and K(k — 1), F(k).

Step 4. Repeat Steps 2 and 3.

3If E[z(0)] = a is known and a # 0, we may define z£(0) = a and Q(0) becomes (X (0) - aaT)~1. The initialization
process (7.46) can still be applied by replacing X (0) by X(0) — aaT and X;(0) by X;(0) — aa” respectively.
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We have the following observations on the robust Kalman filtering algorithm:

1. If the correlation X (0) is exactly known in advance, the polytope is a fixed point at each k. The eigen-
value minimization problem (7.41) turns out to be equivalent to the optimization problem encountered
in the standard adaptive Kalman filtering problem, and can be solved analytically.

2. If we have z;(0) = E [2(0)] in estimator (2), then it can be readily checked that the state estimation
algorithm is unbiased.

3. If system (7.29) is mean square stable and the state-space matrices (the matrices on the right-hand
sides of (7.29b)) are constant, then the state estimation using robust adaptive Kalman filter converges
to a steady state estimator; a proof is given in Section 7.5.

7.3.4 A numerical example: Adaptive equalizer for communication channels

We present an application of the proposed robust adaptive Kalman filtering techniques towards the design
of equalizers for a communication channel. Consider the following IIR model of a communication channel

zy(k+1) ] _[09 05 z1(k) 1

[ zak+1) | =] 0 09| ear) | T 1]5®) (1.48)
" .
() = 1+ 68 1+ ¢ | 2 |4 6+ Cps) + wih),
s is the signal which is transmitted through the channel, w is the —10 dB white noise that corrupts the
received signal y. The channel model (7.48) is affected by time-varying uncertainties ¢ that are a combination
of mixed deterministic and stochastic parametric uncertainties (see for example, [MC88)). Specifically, {(k) =
0.1¢4(k) + 0.5¢,(k), where: (4(k) is deterministic, satisfies |(4(k)| < 1 for all k, and can be measured in real-
time; (, is a zero-mean white noise process with a unit variance, and is independent of w and s. The
initial conditions of the state vectors, z1(0) and z2(0), are random variables and satisfy the second moment
conditions

E[z1(0)z1(0)] <1, E[22(0)22(0)] <1, E[21(0)z2(0)] =0, E[22(0)=1(0)] =0.

For the channel (7.48), we design an equalizer to estimate the input signal s(k) (Fig. 7.1).

Assuming a zero mean, uncorrelated white noise model for the input signal s, we design an equalizer
using the robust adaptive Kalman filtering. The first case considered is when the channel does not have
any uncertainty, i.e., , (4 = {; = 0; this is the ideal channel, and the corresponding equalizer is a standard
adaptive Kalman filter. In Fig. 7.4, we compare the standard Kalman filter with optimal initialization
(obtained by solving (7.46)), with the standard Kalman filter with an ad hoc initialization scheme [Men95]
(P(0) = nI, where n = 0.1,1 and 10). The Mean Square Error (MSE) estimates are obtained by averaging
200 runs. The results indicate that the transient performance of the standard Kalman filtering algorithm
can be improved by solving (7.46) to optimally initialize the recursion.

In the second example, we compare the performance of the standard Kalman filtering algorithm and
the proposed robust adaptive Kalman filtering algorithm in the presence of uncertainties; Fig. 7.5 shows
a comparison of the experimentally obtained mean square error valies, averaged over 200 runs, obtained
with the standard adaptive Kalman filter with optimal initialization by solving (7.46), and our robust
adaptive Kalman filter. It is clear that the the adaptive Kalman filtering techniques presented herein offer
significantly improved estimation performance over the standard adaptive Kalman filter in the presence of
stochastic parametric uncertainties.

7.4 Conclusion

First, we have developed robust minimum mean energy gain (MMEG) and asymptotic minimum mean square
error (MMSE) filtering algorithms for systems with mixed deterministic and stochastic uncertainties.
Secondly, we have developed a robust adaptive Kalman filtering algorithm for linéar time-varying systems
with stochastic parametric uncertainties. If the system is mean square stable and the state-space matrices
are time-invariant, we have established that the robust adaptive filter converges to a steady state estimator.
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Figure 7.4: Illustration of the performance improvement of the standard Kalman filter with optimal initial-
ization

The filtering algorithm is formulated as an optimization problem based on linear matrix inequalities, and

. can be implemented numerically efficiently.
We have illustrated, via numerical examples, the application of these filtering techniques towards design-

ing equalizers for communication channels.

7.5 Appendix: Proof of the convergence of the robust adaptive
Kalman filtering algorithm

Proposition 3 Let A € R**" B ¢ R"X"w, C € R™*", gnd D € R"v*"v_ Suppose that:
1. A has all of its eigenvalues inside the unit disk.
2. DDT > 0.
3. The Riccali equation
P =APAT + BBT — (BDT 4+ APCT)(CPCT + DDT)~Y(DBT + CPAT) (7.49)

has a unique positive semidefinite solution P*.

4. The matriz K* defined by
K* = —(AP*CT + BDT)(CP*CT + DDT)™!
satisfies
(K*D+ B)(K*D + B)T > 0.

Under these conditions, consider the following recursion:

. Pr(k-+1).= min f(P°(k), K(k), ¢ and K*(k)= argmin £(P*(k), K(), (7:502)

*Though the set of positive semidefinite matrices is only a partially ordered set, it is well-known that the problem
ming gy f(P*(k), K(k)) is well defined; see [Koc79).

94




3 T T T T T

e Robust Kalman Filter
-== Standard Kalman Filter

25 ! 1

N
T
-

MSE estimate
Py

Time index

Figure 7.5: Performance comparison between the robust and standard Kalman filters

where

F(P(k), K(k)) & (A+ K(k)C)P(k)(A + K(k)C)T + (K (k)D + B)(K(k)D + B)T. (7.50b)

Then, for any initial condition P(0) > 0, the sequence of solutions { P*(k), K*(k)} to the recursion (7.50)

satisfies
klim P*(k)=P* and klirn K*(k)=K*.

Remark 7.5.1 Condition (2) is a standard assumption with Kalman filtering, see for ezample [Koc79,

Men95, GKN* 7{].
For the special case BT D = 0, the solution of the recursion (7.50) yields the standard recursive Kalman

filter; see for ezample [Koc79, Men95, GKN*t7/]. In this case, conditions (3) and (4) in the theorem

statement are automatically satisfied.
Condition (4) ensures that A+ K*C' 1s stable.

Proof: Let P(0) > 0 be a given initial condition. The proof of the theorem consists of the following steps.

1. Let {P(k), K (k)} and {P;(k), K3(k)} be two sequences consisting of the solutions of (7.50) for two
different initial conditions. If Py (ko) > Pj(ko), then Py(k) > P5(k) for any k > ko.

This follows inductively from

P3 (ko + 1) = f(P; (ko), K3 (ko)) < F(P5 (ko), K7 (ko))
< F(P} (ko), K1 (ko)) = P; (ko +1).

2. Let {P*(k), K*(k)} be the sequence consisting of the solutions of (7.50) for an initial condition P(O)
0. Then, {P*(k)} is bounded. v
Since A is stable, the sequence {P(k)} obtained via the recursion

P(0) = P(0); P(k+1)= f(P(k),0)
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is bounded. (Indeed this sequence converges to the controllability Gramian of (A, B).) Next,

Pr(1) = f(P(0),K*(0)) < f(P(0),0) = P(1),
Pr(2) = f(P*(1),K*(1)) < f(P*(1),0) < f(P(1),0) = P(2).

Inductively, we get P*(k) < P(k). Therefore the sequence {P*(k)} is bounded.

3. The sequence of solutions {Pg(k), Ki(k)} obtained by solving (7.50) with P(0) = 0 satisfies Pg(k+1) >
Py(k), k € Z, with limg_., P§(k) = P*.
First note that P;(1) > P(0) = 0. Next, define P*(k) = Pj(k + 1) and K*(k) = Ki(k + 1),
k=0,1,2,.... Then, clearly {P*(k), IZ':‘(k)} is a sequence consisting of the solutions of (7.50) for the
initial condition P(0) = P§(1). Since P(0) > Po(0) = 0, an application of Step 1 of the proof yields
P*(k) > Py(k), or Py(k+1)> P;(k), k=0,1,2,.... From Step 2, the sequence {Py(k)} is bounded,
and therefore converges to some limit P. Since P > 0, and satisfies (7.49), P = P*.

4. Given any p > 0, there exists P(0) > pI such that the resulting sequence of solutions {P*(k), K*(k)}
of (7.50) satisfies P*(k + 1) < P*(k), k € Z,., with limy_,o, P*(k) = P.
Since A is stable, there exists some Q > 0 such that AQAT —Q+BBT < 0and Q > pI. Let P(0) = Q.

We then have
P(1) = f(P(0), K*(0)) < f(P(0),0) < P(0).

Following the same argument as in Step (3), it is easily shown that P(k) is a nonincreasing matrix
function of k. Since the sequence {P(k)} is bounded below by zero, it converges to some limit P. Since
P > 0, and satisfies (7.49), P = P*.

Now for any initial condition P(0) > 0, there exists P,(0) large enough such that P{0) < P,(0). Let
{Py(k), K{(k)} and {P5(k), K5(k)} be the sequences consisting of the solutions of (7.50) for the initial
conditions P;(0) = 0 and P»(0) respectively. Since both {Py(k)} and {P(k)} converge to P*, the sequence
{P(k)} converges to P* as well. Convergence of {K*(k)} to K* follows immediately from the observation
(see for example, [Koc79]) that P*(k) and K*(k) are related by

K*(k) = —(AP*(k)CT + BDT)(CP*(k)CT + DDT)~1.

Proposition 4 Let {X(k)} be the sequence consisting of the solutions to the recursive equation

X(k+1)= AX(k)AT + BBT + i (AX(EYADT +B;(B)T), k=1,2,..., (7.51)

i=1

with initial condition X(0) > 0, where A, B, A}, B} are constant matrices. The sequence {X(k)} is
convergent and the limit is independent of X(0) if and only if there exists some matriz @ > 0 such that

ATQA-Q+) (A)"Q(4)) <0, (7.52)

i=t
i.e., , the system is mean square stable.

Proof: We first show that the sequence {X(k)} obtained from (7.51) is convergent and the limit is inde-
pendent of X(0) if and only if the sequence {X(k)} obtained from

X(k+1)=AX(k)AT + f: A X (k) (AT (7.53)

i=1

is convergent and limg_.o X(lc) =0.

Suppose the limit of thé sequence {X(k)} exists and limg_. X (k) = 0. For any X(0), define X (k) =
X(k + 1) — X(k). It is easily checked that X (k) satisfies the recursion (7.53). Since limj_o X(k) = 0,
{X(k)} is convergent.




To show that the limit of {X(k)} is unique, suppose {X1(k)} and {X2(k)} are two sequences of solutions
to (7.51) corresponding to two different initial conditions X;(0) and X2(0), with limg_.e X1(k) = X; and
limg 0o X2(k) = X2. Then, it is easily verified that with X(k) = X1(k) — Xo(k), the sequence {X(k)}
consists of solutions of the recursive equation (7.53); then limy .o X (k) = 0 implies X; = Xo.

Now suppose the limit of the sequence {X(k)} exists and is independent of X (0) We show that
limg o0 X(lc) =0.

For any X(0), let X1(0) X(0), X2(0) = 0 and {X;(k)},i = 1,2 be the corresponding sequences from
recursion (7.51). By recursion (7.53), we have X (k) = X;(k)—X2(k). Since limy_.co X1(k) = limg—co X2(k),
we get limg_ o0 X(k) =0.

Finally, with Lemma 7.2.1 that condition (7.52) is necessary and sufficient for {X(k)} to converge to
zero, the statement in the proposition is established. o

In the following, we define limg_.o X (k) =

B=[A{X ... ALX B B} ...,B,],

and

D=[C{x ... Co4X D Dj ... D ].

Proposition 5 Let P(0) be given. Let {P*(k), K*(k)} be the sequence consisting of the solutwns to the
optimization problem (7.50). Let {P*(k), K*(k), F*(k)} be the sequence consisting of the solutions to the
optimization problem

- 1)F(k\ Tr(M(k)), k=12..., (7.54a)
where
F(P(k = 1), K(k - 1)) 2 (A+ K(k — 1)C)P(k — 1)(A + K(k - 1)C)T (7.54b)
+(K(k —1)D + B)(K(k —1)D + B)T, ‘

P(k) = f(P(k —1), K(k — 1)), (7.54c)
M(k) = (I + F(k)C)P(k)I + F(k)C)T + F(k)DDT F(k)7, (7.54d)

and DDT is assumed to be positive definite.

Then:

P*(k) = P*(k) and K*(k)=K*(k), k=12,....

Proof: Starting with the sequence {P*(k), K*(k)} consisting of the solutions to the optimization prob-
lem (7.50), it is clear that

P*(k) = P*(k) and K*(k)=K*(k), k=12,...,

must be (possxbly nonunique) optimizers for problem (7.54) (this follows immediately from the equation (7. 54d)).
Thus, it remains to show that P*(k) = P*(k) and K*(k) = K* (k) are the only candidates as optimizers for
problem (7.54). In other words, it suffices to show that for a given P*(k — - 1), the optimal solutions P*(k)
and K*(k) in (7.54) are unique. However, note that given P*(k —1) and K* (k-1), P*(k) is given simply
as f(P*(k —1), K*(k — 1)), thus we only need to show that given P*(k — 1), K*(k — 1) that solves (7.54) is
unique.

Now, let {P*(k), K*(k), F*(k)} be the sequence consisting of the solutions to the optimization prob-
lem (7. 54) Assuming an optimal value for P(k — 1), we consider the optimization problem (7.54). For
convenience, we introduce new notation for M (k):

g(K(k = 1), F(k)) = (I + F()C)f(P(k — 1), K (k — 1))(I + F(k)C)T + F(k)DDT F(k)T.

We als denote : S :
e Kk = 1)) = i o (K (k = 1), F (k)
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and
- ) Fope(K(k — 1)) = azgmin g(K(k — 1), F(E)).

Note that F*(k) = Fope(K*(k — 1)).
Now for any P(k) = f(P(k — 1), K(k — 1)) > 0, since (CP(k)CT + DDT) > 0, it can be easily verified
that if F(k) # Fopt(K(k — 1)), then ,

|
|
| 9K (k = 1), F()) > g(K(k = 1), Fope( K (k = 1))

and
9(K(k — 1), F(k)) # (K (k — 1), Fope(K(k — 1))).
Therefore
Tr(g(K (k — 1), F(k))) > Tr(g(K(k — 1), Fope(K (k —1))))-
| Thus, Fopt(K (k — 1)) is uniquely determined from K (k —1).
| To show that K*(k — 1) is unique, it suffices to show that for any K(k — 1) # K*(k — 1), Tr(g(K (k —
1), Fope( K (k = 1)) > Tr(g(K* (k — 1), Fope(K*(k — 1))). Let Pi(k) = f(P(k— 1), K(k - 1)) and Pa(k) =
f(P(k —1), K*(k — 1)). Then we have Py(k) > P(k) and Py(k) # Pa(k). Then, we consider two cases:
|
|

1. If Fope(K(k — 1)) # Fopt(K*(k — 1)), then
g(K(k = 1), Fopr(K (k = 1))) > g(K* (k — 1), Fops(K*(k — 1))

and
g(K (k = 1), Fopt(K (k — 1))) # g(K*(k — 1), Fops(K* (k — 1))).
Therefore
Tr(g(K (k — 1), Fope(K (k — 1)))) > Tr(g(K*(k — 1), Fope(K* (k — 1))))-

2. I Fopt(K (k — 1)) = Fopy(K* (k — 1)), then
. Py(k)CT (CPy(k)CT + DDT)™ = Py(k)CT(CP2(k)CT + DDT) ™"
After simple manipulations, we get
DDT(CPy(k)CT + DDT)~' = DDT(CPy(k)CT + DDT)™1.
Since DDT > 0 and Py(K) > Py(K), we have C(Pi(k) — P2(k)) = 0. By (7.54d), this implies that
Tr(g(K (k — 1), Fopt (K (k — 1)) > Tr(g(K™ (k — 1), Fope(K™ (k — 1))))-
This completes the proof. a

Now we are ready to show that the robust Kalman filtering algorithm is convergent.

Theorem 14 Consider the state estimation problem (L = I) of system (7.29), with all the state-space
matrices being time invariant and DDT being positive definite. The robust adaptive Kalman filtering algo-
rithm converges to a steady state LTI estimator, i.e., , for any P(0) > 0, we have limy_,co P*(k) = P*,
limg_oo K*(k) = K*, and limg_oo F*(k) = F* if:

1. There exists Q = QT with @ > 0 such that
ATQA-Q+) (4)7Q(43) <. (7.55)
ji=1
2. The Riccati equation
P = APAT 4 BBT — (BDT + ABCT)(CBCT + DD")~"(DBT + CPAT)
has a unique positive semidefinite solution P*, and the matriz K* defined by
. K* = —(AP*CT + BDT)(CP*CT + DDT)!
salisfies

(K*D + B)(K*D + B)T > 0.

98




| . Proof: With all the state-space matrices in system (7.29) being time invariant, we have A(k) = A, B(k) =
| and
B(ky=[ A3X(k)Y/? ... ALX(k)Y* B Bj ... By ],
Dk)y=[ Ccix(k)V? ... Cc3,X(k)V? D Di ... D |].
The correlation of the state X (k) = E [¢(k)z(k)T] satisfies the recursion

m
X(k+1) = AX(k)AT + BBT + > (A;X (k) (AT + B (B)T), k=0,1,....
j=1
By Proposition 4, we have limg_..o X (k) = X, where X is unique and independent of the initial condition
X(0) € CoX1(0), ;--:Xp(o_)' )
With limg_.oo B(k) = B and limj .o D(k) = D, we now define another set of recursive equations

I?(kl;rii){lF(k)'I\r(M(k))’ (7.56a)

FP(k —1),K(k—1)) 2 (A+ Rk —1)C)P(k — 1)(A + K(k — 1)C)T (7.56b)
+(K(k —1)D + B)(K(k —1)D + B)T, '

P(k) = f(P(k — 1), K(k - 1)), (7.56¢)

M(k) = (I + F(k)C)P(k)(I + F(k)C)T + F(k)DD" F(k)T. (7.56d)

Using arguments similar to those in the proof of Theorem 13, we conclude that (7.56) is equivalent to
the LMI problem :

. Minimize: Tr(M (k))

Subject to:

QR Q(k)A+Y(k)C Q(k)B+Y (k)D
@QmA+YHRIO)T  Qk-1) 0 >0, (7.57)
(Q(k)B + Y (k)D)" 0 I
M (k) I+ F(k)C F(k)D
[ I+CTF(E)T  Qk) 0 } >0, Q(k)>0,
DTF(k)T 0 I

where Q(k) = P(k)~! and Y (k) = Q(k)K (k — 1).
Let K*(k) and F*(k) denote the optimal Kalman gains of (7.56). From Proposition 5, equation (7.56)
has the same optimal solution of P(k) and K*(k) as that of equation (7.50). From Proposition 3, we have

limg oo K*(k) = K* and (A + K*C) is stable. Thus

Zz: f[(A + K*(k)C)(A + E*(k)C)T| < T1(P(0)),

j=lk=j

where T1(P(0)) is a uniform bound over i > 0 and depends only on P(0).
f(P(k), K(k)) is a continuous and strictly convex function of P(k) and K(k). From LMIs (7.35)
and (7.57), it follows that for any small number ¢, there exists N, such that whenever k > N, we have

IF(P(k), K* (k) = F(P(k), K" (k))I| < To(P(k))e,

where K*(k) is the optimal solution of LMI (7.41) and T5(P(k)) is a constant that depends on P(k). T2(P(k))
is finite if P(k) is bounded. B
. By setting P(N) = P(N), we get ||P(N + 1) — P(N + 1)|| < T2(P(N))e. At time N + 1, we have

IP(N +2) = P(N +2)l| = |[f(P(N +1), K*(N + 1)) = f(P(N +1), K* (N+1))||
< (T(P(N)II(A+ K*(N + DC)(A + K*(N + DC)T|| + To(P(N +1))) e.
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Recursively for i = 2,3, ..., we get
. |P(N + i) — P(N + )|
= ||f(P(N +i—1),K*(N +i—1)) = f(P(N +i—1), K*(N +i-1))||

< TH(P(N +i— 1)e

i—1 N+i-1
+| S (P + 5 - 1)) h:m+memu+RﬂmmTe
j=1 k=N+j

< (PO i - 1)+ _ax BP0+ TPV )

Using an argument along the lines of Step (2) in Proposition 3, we obtain that {P(k)} is also bounded,
with the bound depending only on P(0). Therefore, there exist finite constants T3(P(0)) and T4(P(0)), that
depend on P(0), such that for any k > 0, T1(P(k)) < T3(P(0)) and T3(P(k)) < Ta(P(0)). Thus, we conclude
that ||P(N + i) — P(N +i)|| is bounded and that

|P(N + ) = P(N +9)]| < [Ta(P(0))T5(P(0)) + Ta(P(0))]e.
Since € can be arbitrarily small when N is large enough, we obtain
dm P = Jim P(E) = P
Similar arguments establish that

lim K(k) = lim K(k)=K* and lim F(k)= lim F(k) = F*.
k—o00 k—o00 k—o00 k—oo
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1 Introduction

The models of control systems encountered in several diverse naval applications are non-
linear; moreover, they are also time-varying, and have uncertainties affecting them. The
underlying controller design problems, beyond requiring system stability, also typically re-
quire the optimization of some performance objectives. Ideally, the control law should have
the properties that: (1) it adapts itself according to the nonlinearities; (2) it can handle
several performance objectives (besides stability) in a uniform manner; and (3) it guarantees
the performance of the closed-loop system in spite of the variations and the uncertainties.

The overall goal of the project is a numerical solution methodology for solving the general
nonlinear controller design problem. Our approach is motivated by recent advances in control
and optimization theory as well as the sustained growth in the available computing power
over the past few years. The proposed controller architecture is gain-scheduled (i.e., the
controller uses the measured nonlinearities and time-variations), and optimizes the worst-case
performance—over the uncertainties—of the system. The search for the optimal controller
parameters can be reformulated as convex optimization problems involving linear matrix
inequalities (LMIs) in several important cases. The design approach lends itself naturally to
the development of computer-aided design tools, and enjoys the advantages of widespread
applicability, ease of implementation and cost effectiveness.

The progress achieved towards overcoming some of the technical roadblocks was outlined
in the following reports:

e Progress report for the period May 1997 - October 1997
e Annual report for the period May 1997 - April 1998
e Progress report for the period May 1998 - October 1998

Since then, efforts have been directed towards applying the research results towards the
Basic Research on Intelligent Information and Autonomous Agents, and Applied Research

on Unmanned Combat Air Vehicles, directed by Dr. Allen Moshfegh, ONR.

1.1 Gain-scheduled control of the Texas A&M UCAV models

The dynamics of Unmanned Combat Air Vehicles (UCAVs) undergoing aggressive maneuvers
are highly nonlinear and time-varying. One approach towards modeling UCAVs involves
linearizing the dynamics of the UCAV around various points in the flight envelope. Then,
the composite model of the UCAV can be given as a linear parameter-dependent model, with
the parameters being the flight conditions. A comprehensive effort towards identifying such
models is currently being undertaken at Texas A&M University.

We have directed research efforts towards a systematic design procedure for controller
synthesis for the linear parameter-dependent ONR UCAV models. Traditional techniques for
controller synthesis consist of designing a single controller that is intended to function across
varying flight conditions. These include constant state-feedback, as well as the celebrated
LQR/LQG and H,, controllers. While these control techniques can be sometimes proven
to work (i.e., stabilize the system or provide acceptable performance), they can be quite
conservative, especially when the flight conditions vary considerably.
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Gain-scheduled controller design offers the potential much more aggressive control design.
The basic idea is to synthesize a series of dynamic controllers, one for each linearized model
of the UCAV around a flight condition, and then “schedule” these controllers according to
the actual flight condition. An ad hoc implementation of such a scheme is not guaranteed to
work; however, it is possible to develop a gain-scheduling scheme, using Lyapunov functions,
that is guaranteed to work across various flight regimes.

Another advantage of an approach based on Lyapunov functions is that it can be extended
to handle constraints other than mere stability. Stability requires the Lyapunov function to
decrease along the trajectories of the parameter-varying system. Additional constraints
on the Lyapunov function can be used to design controllers with guaranteed performance.
Examples of performance measures are the energy in the state vector, and peak values
of signals of interest; in several instances, it is desirable that these performance measures
be small. And gain-scheduled controllers that minimize upper bounds on these performance
measures can be designed. The technical details behind synthesizing improved gain-scheduled
controllers can be found in [1, 2]. ,

The fore-mentioned ideas have been integrated into Dr. Moshfegh’s project:

The simulation results of applying gain-scheduled control techniques on the Texas
A&M UCAV models, preprints outlining the technical approach, and software
have been made available on the website

http://dynamo.ecn.purdue.edu/ ragu/onr/gs-contr.html
A snapshot of the web-page is shown in the appendix.

1.2 Robust estimation

A second research direction that is relevant to Dr. Moshfegh’s project was identified during
the January semi-annual program review, held in January 1999.

Estimation problems arise in many naval applications in control, communications and
signal processing areas. Traditional estimation algorithms are usually based on a nominal
system model without uncertainty. However, in many cases, there exist uncertainties in
model parameters and even model structures because of modeling errors from system iden-
tifications. These uncertainties may degrade the estimation performance of the algorithm
without robustness. One application area of robust estimation in Dr. Moshfegh’s project is
in the automated landing of UCAV with passive sensors.

In recent years, with the advances of robust control theory, many results on robust esti-
mation have become available. Qur efforts have been directed towards deriving Kalman-type
estimators for linear time varying systems with stochastic uncertainties. Specifically, we have
derived an adaptive robust Kalman filtering algorithm that addresses estimation problems
that arise in linear time-varying systems with stochastic parametric uncertainties. The filter
has the one-step predictor-corrector structure and minimizes the mean square estimation
error at each step, with the minimization reduced to a convex optimization problem based
on linear matrix inequalities. The algorithm is shown to converge when the system is mean
square stable and the state-space matrices are time-invariant. A numerical example, con-
sisting of equalizer design for a communication channel, demonstrates that our algorithm




offers considerable improvement in performance when compared to standard Kalman filtering
techniques.

The technical details can be found in [3]; a preprint of this paper is available on
the website

http://dynamo.ecn.purdue.edu/ ragu/onr/rob-est.html

1.3 Publications

Journal papers published/accepted for publication

e A. L. Tits and V. Balakrishnan. “Small-u Theorems with Frequency-Dependent Un-
certainty Bounds”. Mathematics of Control, Signals, and Systems, vol 11, no. 3, pages
220-243, 1998.

e V. Balakrishnan and R. L. Kashyap. “Robust Stability and Performance Analysis of
Uncertain Systems Using Linear Matrix Inequalities”. Journal of Optimization Theory
and Applications, vol. 100, no. 3, March 1999.

e A. L. Tits, V. Balakrishnan and L. Lee. “Robustness under Bounded Uncertainty with
Phase Information”. IEEE Trans. Aut. Contr., AC-44(1):50-65, January 1999.

e Y. S. Chou, A. L. Tits and V. Balakrishnan. “Absolute Stability Theory, u Theory,
and State-Space Verification of Frequency-Domain Conditions: Connections and Im-
plications for Computation”. IEEE Trans. Aut. Contr., AC-44(5):906-913, May 1999.

¢ V. Balakrishnan and F. Wang. “Efficient Computation of a Guaranteed Lower Bound
on the Robust Stability Margin of Uncertain Systems”. Accepted for publication in
IEEE Trans. Aut. Contr., 1999.

Conference papers accepted/published

e V. Balakrishnan and F. Wang. “Efficient Computation of a Guaranteed Lower Bound
on the Robust Stability Margin of Uncertain Systems”. In Proc. IEEE Conf. on Deci-
sion and Control, pages 4406-4407, Tampa, FL, December 1998.

o F. Wang and V. Balakrishnan. “Improved Stability Analysis and Gain-Scheduled Con-
troller Synthesis for Parameter-Dependent Systems”. In Proc. IEEE Conf. on Decision
and Control, pages 1771-1776, Tampa, FL, December 1998.

e F. Wang and V. Balakrishnan. “Robust Adaptive Kalman Filters for Linear Time-
Varying Systems with Stochastic Parametric Uncertainties.” In IEEE American Con-
trol Conf., pages 440-444, San Diego, CA, June 1999. Finalist, best student paper
award.

e F. Wang and V. Balakrishnan. “Robust Estimators for Systems with Both Deter-
ministic and Stochastic Uncertainties.” Accepted for presentation in IFEE Conf. on
Decision and Control, Phoenix, Arizona, December 1999.
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e F. Wang and V. Balakrishnan. “Robustness analysis and gain-scheduled controller syn-
thesis for rational parameter-dependent uncertain systems using parameter-dependent
Lyapunov functions.” Accepted for presentation in IEEE Conf. on Decision and Con-
trol, Phoenix, Arizona, December 1999.

2 Research Plan for the next period

2.1 Multi-objective gain-scheduled controller synthesis for UCAV
models

The simulation results, obtained from the Texas A&M UCAV models, show considerable
promise. Therefore, further efforts will be directed to study controller design with other
performance measures. In particular, we intend to systematically study the tradeoff between
competing design requirements.

2.2 Further robust estimation efforts

The preliminary efforts towards robust estimation have concentrated on Kalman-type filter-
ing problems. We intend to direct further effort towards other robust estimation problems,
such as deriving Hy.-type estimators. We will also direct our efforts towards applying some
of these research results on the specific problems that arise in Dr. Moshfegh’s project, such
as the automated landing of UCAV with passive sensors.

References
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Snapshot of the webpage

http://dynamo.ecn.purdue.edu/ “ragu/onr/rob-est.html

Gain-scheduled control of the ONR UCAYV

Introduction

The dynamics of Unmanned Combat Air Vehicles (UCAVs)
undergoing aggressive maneuvers are highly nonlinear and
time-varying. One approach towards modeling UCAVs involves
linearizing the dynamics of the UCAV around various points in the
flight envelope. Then, the composite model of the UCAV can be given as a linear
parameter-dependent model, with the parameters being the flight conditions. A
comprehensive effort towards identifying such models is currenly being undertaken at Texas

A & M University .

We describe here research efforts towards a systematic design procedure for controller
synthesis for the linear parameter-dependent ONR UCAV models. Traditional techniques for
controller synthesis consist of designing a single controller that is intended to function across
varying flight conditions. These include constant state-feedback, as well as the celebrated
LQR/LQG and H-infinity controllers. While these control techniques can be sometimes
proven to work (i.e., stabilize the system or provide acceptable performance), they can be

quite conservative, especially when the flight conditions vary considerably.

Gain-scheduled controller design offers the potential much more aggressive control design.
The basic idea is to synthesize a series of dynamic controllers, one for each linearized model
of the UCAV around a flight condition, and then "schedule" these controllers according to the
actual flight condition. An ad hoc implementation of such a scheme is not guaranteed to work;
however, it is possible to develop a gain-scheduling scheme, using Lyapunov functions, that
is guaranteed to work across various flight regimes.

Another advantage of an approach based on Lyapunov functions is that it can be extended to
handle constraints other than mere stability. Stability requires the Lyapunov function to
decrease along the trajectories of the parameter-varying system. Additional constraints on the
Lyapunov function can be used to design controllers with guaranteed performance. Examples
of performance measures are the energy in the state vector, and peak values of signals of
interest; in several instances, it is desirable that these performance measures be small. And
gain-scheduled controllers that minimize upper bounds on these performance measures can be
designed.

The technical details behind synthesizing improved gain-scheduled controllers can be found
in the following papers, and the references therein:

‘F. Wang and V. Balakrishnan, ¢ ‘Improved Stability Analysis and Gain-Scheduled Controller
Synthesis for Purameter-Dependent Systems”’. In Proc. IEEE Conf. on Decision and Control,
pages 1771--1776, Tampa, FL, December 1998.

‘F. Wang and V. Balakrishnan, *‘ Robustness analysis and gain-scheduled controller synthesis
for rational parameter-dependent uncertain systems using parameter-dependent Lyapunov
functions’’. Accepted for presentation in the IEEE Conf. on Decision and Control, December
1999.

Gain-scheduled controllers for some UCAV models
We present the application of gain-scheduled controller design techniques on the models for




UCAVs developed at Texas A & M University:

Longitudinal VSTOL1 model, stability
Longitudinal VSTOL1 model, performance
Lateral/directional VSTOL1 model, stability
Lateral/directional VSTOL1 model, performance
Longitudinal UCAV6 model, stability
Longitudinal UCAV6 model, performance
Lateral/directional UCAV6 model, stability
Lateral/directional UCAV6 model, performance

MATLAB code
MATLAB code
MATLAB code

MATLAB code

MATLAB code

MATLAB code
MATLAB code
MATLAB code




PROGRESS REPORT FOR THE PERIOD MAY 1998 - OCTOBER 1998

Project title: Robust Gain-Scheduled Nonlinear Control Design
for Stability and Performance

Principal Investigator:  Venkataramanan Balakrishnan, Purdue University

Contract No: N00014-97-1-0640 (Young Investigator Award)

Program Director: Allen Moshfegh, Ph.D.

The research goals outlined in the original proposal were:

Deriving models for uncertain nonlinear systems that lend themselves to the use of robust control
techniques.

Robust stability analysis of nonlinear systems using optimization based on linear matrix inequalities
(LMIs).

Robust performance analysis of nonlinear systems using LMI methods.

Gain-scheduled controller design.

The progress made towards achieving some of these goals were reported in two earlier reports:

Progress report for the period May 1997 - October 1997
Annual report for the period 1 May 1997 - 30 April 1998

Progress since these reports is described below:

Stability Multipliers and u Upper Bounds: Connections and Implications for Computation

The technical approach underlying the project uses convex optimization over Linear Matrix Inequalities
(LMIs) in the framework on Integral Quadratic Constraints (IQCs) to obtain sufficient conditions for the
robust stability of systems with structured uncertainties. While this approach applies to a wider class of
uncertain systems than those handled by the traditional p methods of robust control, a fundamental
question is how it compares with [ analysis. We have answered this question by establishing the
equivalence between the two approaches. In particular, the relationship between the stability multipliers
used in the IQC framework and the scaling matrices used in the p methods has been explicitly
characterized. The development hinges on the derivation of certain properties of a parameterized family
of complex LMIs, a result of independent interest. The derivation also suggests a general computational
framework for checking the feasibility of a broad class of frequency-dependent conditions, based on
which bisection schemes can be devised to reliably compute several quantities of interest for robust
control.

" The results from this work have been reported in publication [1].




Small-y Theorems with Frequency-dependent Upper Bounds

As noted before, the technical approach underlying the project is equivalent to the traditional scaling
methods of W analysis when applied to linear time-invariant systems affected by structured linear time-
invariant uncertainties. The result of such analyses are the so-called small-p theorems, typically stated
when the bounds on the uncertainty norms are frequency-independent. Of course, this is usually not the
case in engineering: The uncertainty sizes typically tail off at high frequencies, necessitating the use of
frequency-dependent norm bounds. We have derived conditions, some necessary and some sufficient,
valid under weak assumptions, for robust stability and uniform robust stability of uncertain linear time-
invariant systems with linear time-invariant uncertainties that are block-diagonal, with known frequency-
dependent norm bounds on the diagonal blocks. Small-p theorems with frequency-independent
uncertainty bounds are recovered as special cases.

The results from this work have been reported in publication [2].

Robust Adaptive Kalman Filtering

Often, it is useful to model uncertain systems as linear time-varying systems with stochastic parametric
uncertainties. For such models, state estimation is the first step in designing control strategies. An
ongoing effort is the design of adaptive robust Kalman filtering algorithms that address such estimation
problems. Specifically, we are focusing on the design of Kalman filters, with the one-step predictor-
corrector structure, that minimize the mean square estimation error at each step, with the aim of
reformulating the minimization as a convex optimization problem based on linear matrix inequalities.
Preliminary results indicate that our algorithm offers considerable improvement in performance when
compared to standard Kalman filtering techniques.

The results from this work have been submitted for presentation at the 1999 American Control
Conference.
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1 Introduction

The models of control systems encountered in several diverse naval applications are non-
linear; moreover, they are also time-varying, and have uncertainties affecting them. The
underlying controller design problems, beyond requiring system stability, also typically re-
quire the optimization of some performance objectives. Ideally, the control law should have
the properties that: (1) it adapts itself according to the nonlinearities; (2) it can handle
several performance objectives (besides stability) in a uniform manner; and (3) it guarantees
the performance of the closed-loop system in spite of the variations and the uncertainties.

The goal of the project is a numerical solution methodology for solving the general
nonlinear controller design problem. Qur approach is motivated by recent advances in control
and optimization theory as well as the sustained growth in the available computing power
over the past few years. The proposed controller architecture is gain-scheduled (i.e., the
controller uses the measured nonlinearities and time-variations), and optimizes the worst-case
performance—over the uncertainties—of the system. The search for the optimal controller
parameters can be reformulated as convex optimization problems involving linear matrix
inequalities (LMIs) in several important cases. The design approach lends itself naturally to
the development of computer-aided design tools, and enjoys the advantages of widespread
applicability, ease of implementation and cost effectiveness.

2 Summary of Results to Date

2.1 Robust stability and performance analysis using multiplier
theory and LMI optimization
The first step in realizing the project goals is that of robustness analysis of nonlinear sys-

tems. In order to achieve this, we began with a linear fractional representation of uncertain
nonlinear systems, shown in the block-diagram in Fig. 1.
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Figure 1: Robustness analysis framework.

In Fig. 1, A consists of:
e uncertainties affecting the system;
e non-rational nonlinearities; and

e appropriate copies of the state-vector, so as to realize any rational nonlinearities.




With the uncertain nonlinear system represented as in Fig. 1, we performed its robust
stability and performance analysis in a unified manner using multiplier theory [1, 2, 3,
4, 5], or more generally, in the framework of integral quadratic constraints or 1QCs [6].
The merit of this approach is that several sufficient conditions for robust stability can be
performed without frequency sampling, using convex optimization techniques based on LMIs.
We showed that multiplier techniques yield a convex parametrization of a set of Lyapunov
functions that prove robust stability. By imposing additional conditions on these Lyapunov
functions, we derived bounds on the robust performance for the system in Fig. 1; thus we
used Lyapunov functions to “prove” robust performance. The “best” performance bounds
were obtained by numerically optimizing these bounds, using LMI-based methods, over the
set of Lyapunov functions that prove robust performance.

The results were documented in the publication [7].

2.2 Robustness under bounded uncertainty with phase informa-
tion

The special case of systems considered in Section 2.1 where there are no nonlinearities,
and where the uncertainties, in addition to being bounded, also satisfy constraints on their
phase, is of particular interest. In this context, we have defined the “phase-sensitive struc-
tured singular value” (PS-SSV) of a matrix, and have shown that sufficient (and sometimes
necessary) conditions for stability of such uncertain linear systems can be rewritten as con-
ditions involving PS-SSV. We have also derived upper bounds for PS-SSV, computable via
convex optimization. We have extended these results to the case where the uncertainties are
structured (diagonal or block-diagonal, for instance).
The results of this research will appear in [8].

2.3 Modeling and control of the humoral immune response

In order to evaluate the efficacy of the approach described in Section 2.1, we considered a
nonlinear model of the humoral immune response. The original immune system model was a
second-order predator-prey model with a time-delay element. We obtained an approximate
finite-state nonlinear model next, with the nonlinearities being rational functions of the state
vector elements. This nonlinear system was then cast in the robust control framework, by
using linear fractional transformations; the resulting model consisted of a fixed linear system
with multiple copies of the state vector appearing in a feedback loop. Optimization based
on LMIs was then applied to derive a nonlinear controller (i.e., an intravenous drug delivery
strategy) for this system so as to stabilize the system, and in addition to minimize a measure
of the drug delivered. Through simulations, the proposed intravenous drug strategy was
shown to shorten patient recovery time, to lower peak drug concentrations and to decrease
the total drug administered, when compared to standard antibiotic strategies.
The results from this work have been reported in publication [9)].




2.4 Efficient computation of a guaranteed lower bound on the ro-
bust stability margin of uncertain systems

We were also able to substantially reduce the computational burden associated with LMI
methods for establishing robust stability. Returning to the system shown in Fig. 1, consider
the robust stability margin of the system, defined as the largest “size” of A against which
the system is guaranteed to be stable. (This quantity is of considerable importance in robust
control; approaches such as y analysis [10] can be viewed as obtaining lower bounds on the
robust stability margin.) When lower bounds on the robust stability margin are obtained
through multiplier methods using the theory of Integral Quadratic Constraints, bisection
schemes are typically used, with each iteration requiring the solution of an LMI feasibil-
ity problem. We have been able to avoid the bisection scheme altogether by reformulating
the lower bound computation problem as a single generalized eigenvalue minimization prob-
lem, which can be solved very efficiently using standard algorithms. We have illustrated
this with several important, commonly-encountered special cases: Diagonal, nonlinear un-
certainties; diagonal, memoryless, time-invariant sector-bounded (“Popov”) uncertainties;
structured dynamic uncertainties; and structured parametric uncertainties. We also have
generated a numerical example that illustrates our approach. The following table shows
typical computational improvement that can be expected.

[ Uncertainty Type | Stab. Margin | Bisect. (sec) | Our scheme (sec) |

General nonlinear | 1.2896 x 102 5.6800 0.8200
Dynamic 1.2899 x 1072 62.5700 20.3000
Popov-type 1.3264 x 102 99.5700 26.5300
Parametric 1.3278 x 1072 51.8400 19.8300

The results from this work have been reported in publication [?].

2.5 Improved stability analysis and gain-scheduled controller syn-
thesis for parameter-dependent systems

We have derived an algorithm for the robust stability analysis and gain-scheduled controller
synthesis for linear systems affected by time-varying parametric uncertainties. (This repre-
sents an important first step in our ultimate goal of deriving effective gain-scheduled control
strategies for nonlinear systems.) Sufficient conditions for robust stability as well as condi-
tions for the existence of a robustly stabilizing gain-scheduled controller are given in terms of
a finite number of LMIs; explicit formulae for constructing robustly stabilizing gain-scheduled
controllers are given in terms of the feasible set of these LMIs. We have proved that our
approach is in general less conservative than the existing methods for stability analysis and
gain-scheduled controller synthesis for parameter-dependent linear systems; numerical ex-
amples have shown that our approach offers significant improvement in practice as well.
The results from this work have been reported in publication [11].




2.6 Algorithms and software

One of the tasks that is of fundamental importance to the proposed project is a survey of
optimization algorithms and software for the solution of LMI problems. A comprehensive
overview of the state of the art of numerical algorithms for LMI problems, and of the available
software was reported in publication [12].

2.7 Application of results to signal processing problems

The models underlying many signal processing systems are exactly the same as those of
control systems. Motivated by this fact, we explored the solution of some signal processing
problems using convex optimization using LMIs, and reported the results in publication [13].

2.8 Publications

Journal papers published/accepted for publication

1. V. Balakrishnan and R. L. Kashyap. “Robust Stability and Performance Analysis
of Uncertain Systems Using Linear Matrix Inequalities”. To appear in Journal of
Optimization Theory and Applications, vol. 100, no. 3, March 1999. 20 pages.

2. A. L. Tits, V. Balakrishnan and L. Lee. “Robustness under Bounded Uncertainty with
Phase Information”. To appear in the IEEE Trans. Aut. Contr., 1998. 13 pages.

3. A. E. Rundell, R. A. DeCarlo, V. Balakrishnan and H. HogenEsch. “Investigations
into Treatment Strategies Aiding the Immune Response to Haemophilus Influenzae”.
IEEE Trans. Biomed. Eng., vol. 45, no. 4, pages 429-439, April 1998.

4. V. Balakrishnan and F. Wang. “Efficient Computation of a Guaranteed Lower Bound
on the Robust Stability Margin of Uncertain Systems”. To appear after revision in
IEFEFE Trans. Aut. Contr., 1998.

5. L. Vandenberghe and V. Balakrishnan. “Algorithms and Software for LMI Problems
in Control”. IEEE Control Systems Magazine, pages 89-95, October 1997.

Conference papers published

1. V. Balakrishnan and L. Vandenberghe. “Linear Matrix Inequalities for signal pro-
cessing. An overview”. Invited for presentation at the 32nd Annual Conference on
Information Sciences and Systems, Department of Electrical Engineering, Princeton
University, Princeton NJ, March 1998.

Pending conference papers

1. V. Balakrishnan and F. Wang. “Efficient Computation of a Guaranteed Lower Bound
on the Robust Stability Margin of Uncertain Systems”. Under review for presentation
at the IEEE Conf. on Decision and Control, December 1998.



2. F. Wang and V. Balakrishnan. “Improved Stability Analysis and Gain-Scheduled Con-
troller Synthesis for Parameter-Dependent Systems”. Under review for presentation at
the IEEE Conf. on Decision and Control, December 1998.

3 Research Plan for the next period

3.1 Gain-scheduled controller synthesis for nonlinear systems

The research results reported in Section 2.5 describe the synthesis of gain-scheduled con-
trollers for linear systems affected by time-varying parameters. The next step is to extend
this approach to the case of nonlinear parameter-dependent systems. The underlying tech-
nical problem is to handle, in a non-conservative fashion, multiple copies of the state vector
that appear in A in Fig. 1. One approach that is promising is to introduce constant scaling
matrices that take advantage of the structure of A. Less conservative methods that use
dynamic scalings will also be investigated.

3.2 Tuning our approach towards the control of Unmanned Intel-
ligent Autonomous Air Vehicles

While our research efforts thus far have tended to address the fundamentals of robust nonlin-
ear control, we will next focus on the specific problem of the control of Unmanned Intelligent
Autonomous Air Vehicles (UIAAVs). To this end, we will collaborate with other ONR re-
searchers in this area. In particular, we will test our algorithms on the system models
gathered from other researchers.

3.3 Development of CAD tools

The proposed analysis and design techniques are applicable to other nonlinear control prob-
lems besides the control of UIAAVs. To enable such applications, CAD tools with graphical
user interfaces can be built, which will serve as a valuable addition to the library of per-
formance evaluation and controller design software for nonlinear systems. This CAD tool
will take as (graphical) input the block-diagram of the nonlinear system, and will generate
controller parameters, and a Lyapunov function guarantee for the design.

3.4 Efficient solution of large-scale linear matrix inequalities

The linear matrix inequalities encountered with our approach tend to so large (both in the
number of variables, as well as the number of constraints) so as to test the limits of available
computing software. We intend to explore alternative ways towards solving such large-scale
LMI problems efficiently.
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The research goals outlined in the original proposal were:

* Deriving models for uncertain nonlinear systems that lend
themselves to the use of robust control techniques.

* Robust stability analysis of nonlinear systems using optimization
based on linear matrix inequalities (LMIs).

* Robust performance analysis of nonlinear systems using LMI methods.

* Gain-scheduled controller design.

The progress made towards achieving some of these goals is
outlined below:

ALGORITHMS AND SOFTWARE

One of the tasks that is of fundamental importance to the
proposed project is a survey of optimization algorithms and
software for the solution of LMI problems. This work was
performed in collaboration with Professor Vandenberghe of
UCLA, and a comprehensive overview of the state of the art
of numerical algorithms for LMI problems, and of the
available software was reported in publication [1].

ROBUST STABILITY AND PERFORMANCE ANALYSIS USING MULTIPLIER
THEORY AND LMI OPTIMIZATION

Our proposed approach for robust nonlinear control design
builds on the following: The robust stability and
performance analysis of uncertain systems, with various
assumptions on the nature of the uncertainties
(sector-bounded nonlinear, linear time-invariant,
parametric, etc.), as well as their structure (diagonal,
block-diagonal, etc.), can be performed in a unified manner
using multiplier theory and LMI-based convex optimization.
Not only does this provide a unification of several
apparently-diverse robust stability tests, but it also paves
the way for developing new stability tests. In addition,
the multipliers used in the stability analysis can be shown
to yield a convex parametrization of a subset of Lyapunov
functions that provide a certificate of robust stability.
These Lyapunov functions can in turn be used to derive
bounds on various robust performance measures for uncertain
systems. A tutorial outlining this approach was prepared
for publication [2].

MODELING AND CONTROL OF THE HUMORAL IMMUNE RESPONSE

In order to test of the efficacy of our proposed methods, a
nonlinear model of the humoral immune was considered. (This
represents ongoing work, performed in collaboration with
Professor DeCarlo and Ms. Rundell at the School of
Electrical and Computer Engineering at Purdue.) The
original immune system model is a second-order predator-prey
model with a time-delay element. An approximate
finite-state nonlinear model was next obtained, with the
nonlinearities being rational functions of the state wvector
elements. This nonlinear system was then cast in the robust
control framework, by using linear fractional
transformations; the resulting model consisted of a fixed
linear system with multiple copies of the state vector
appearing in a feedback loop. Optimization based on LMIs
was then applied to derive a nonlinear controller for this
system. The results from this work have been reported in
publication [3].
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